Semianalytical model for simulation of electronic properties of narrow-gap strained semiconductor quantum nanostructures
Résumé
A complete semianalytical model is proposed for the simulation of the electronic, mechanical, and piezoelectric properties of narrow-gap strained semiconductor quantum nanostructures. A transverse isotropic approximation for the strain and an axial approximation for the strained 8x8 Hamiltonian are proposed. It is applied extensively to the case of InAs/InP quantum dots (QDs). Symmetry analysis shows that there does exist a nonvanishing splitting on the electron P states due to the coupling with valence band. This splitting, which was not considered before, is found to be smaller in InAs/GaAs QD than in InAs/InP QD. Analytic expressions for the first and second order piezoelectric polarizations are used to evaluate the perturbation of electronic states.
Domaines
Optique / photoniqueOrigine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...