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Abstract. 

A complete semi-analytical model is proposed for the simulation of the electronic, mechanical 

and piezoelectric properties of narrow gap strained semiconductor quantum nanostructures. A 

transverse isotropic approximation for the strain and a new axial approximation for the 

strained 8x8 Hamiltonian are proposed. It is applied extensively to the case of InAs/InP 

quantum dots (QD). Symmetry analysis shows that the non-vanishing splitting of the electron 

P states is smaller in InAs/GaAs QD than in InAs/InP QD. Analytic expressions for the first 

and second order piezoelectric polarizations are proposed. 
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The eight-band k.p model of strained zinc-blende crystals [1] has now been extensively 

used to describe the electronic structure of III-V semiconductor nanostructures. The eight-

band k.p Hamiltonian for bulk strained materials is known [2] to exhibit a two-fold degenerate 

spectrum related to a diagonalization into two 4x4 blocks exhibiting a dependence on the k-

vector. A unitary transformation of this kind, but independent on the tranverse k-vector, has 

been introduced to transform the 6x6 Hamiltonian in quantum wells (QW) into two 3x3 

blocks [3] and more recently [4] to transform the 8x8 Hamiltonian (two 4x4 blocks) for type-

II interband cascade lasers. The same approximation was used for cylindrical quantum wires 

(QWr) [5,6]. The Hamiltonian is block diagonal with the use of a new basis. For the 

simulation of the electronic properties of quantum dots (QD), the k.p method [7-9] is more or 

less a standard method although more elaborate theoretical schemes can be employed [10]. 

The strained-dependent 6x6 Hamiltonian for the valence band in InP/In0.49Ga0.51P QD was 

simplified into an axially symmetric form in ref. 11. We propose in the present work to extend 

these approaches to the 8x8 Hamiltonian in order to provide a fast and easy method [12] to 

evaluate the electronic spectra of narrow-gap semiconductor QDs. Strain effects are taken 

carefully into account. A new axial approximation is proposed for the strained part of the 8x8 

Hamiltonian and applied to InAs/InP and InAs/GaAs QD.  

We will consider in this paper QD geometries corresponding to the C∞v symmetry 

(around the z axis). The real calculation is performed in 2D cylindrical coordinates (r , z ) on 

truncated cones of various heights. The chosen dimensions are 8.8nm for the cone height and 

35nm for the diameter [9]. Our previous results on InAs/InP QD were obtained either using a 

complete 3D 8-band k.p strained Hamiltonian [9] or a simple 1-band k.p Hamiltonian with 

strain renormalized constants in 2D cylindrical coordinates [13].  We may notice that InAs 

QD grown either on (100) or (311)B misoriented surface are interesting for applications 

purposes[14,15]. The present model is however expected to be applied only to QD grown on 
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(100) with cylindrical symmetry. InAs/GaAs QD are finally considered for comparison 

purposes. 

We start from the 8x8 strained Hamiltonian for bulk materials given in ref. 1 or 8. 

When considering first the unstrained part of the Hamiltonian, the axial approximation is the 

same as for the 6x6 bulk Hamiltonian [3,11] :  
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The other terms of the Hamiltonian can be expressed as a function of the zk  and ±k  

operators, without any more approximations for S , P  and  Q . To extend the model used in 
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[5,6], it is straightforward to check that the 8x8 QD Hamiltonian is block diagonal in azF  

basis, where zF  = Zz LJ +  is the total angular momentum. Thus, zF  becomes a good quantum 

number (each block corresponds to one Fz value). The basis is constructed in a product form 

zzzz JFLJJ −=,  where the first term corresponds to the band-edge Bloch functions (the 

( )21 u,u ,  ( )54 u,u , ( )63 u,u , ( )87 u,u  bands are respectively related to the conduction band 

(CB), heavy holes (HH), light holes (LH) and  split-off bands (SO)) [13] . The second term 

zzz JFL −=  corresponds to the envelope functions adapted to the usual 1-band cylindrical 

representation (C∞v symmetry). ,...2,1,0Lz ±±=  are related to the so-called S, P, D, …radial 

functions of this representation [13] . All monoelectronic states are a mixing of 8 bands but 

we will still indicate, if possible, the most important component (for example "CB 1-S" for 

the CB ground state).   The boundary conditions are of Neuman type for the S-like radial 

functions and of the Dirichlet type for all the other radial functions [12].  
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This new basis is interesting for several reasons. The state degeneracy is automatically 

taken into account with zF  and zF− . It is also possible to obtain a schematic electronic 

spectrum, based only on symmetry considerations. Figure 1 is a comparison between the CB 

a) and valence band (VB) b) states close to the band gap, in the 1-band representation on the 

left and in the axial 8-band representation on the right. The CB ground state is mainly 

associated to 21±=zF  and to the 1u  or 2u  band-edge Bloch functions and the first S-like 

envelope functions.  The VB ground state  is  “HH 1S” with 23±=zF .  The electronic gap 

is then obtained after two separate calculations with 21Fz ±=  and 23±=zF . Another 

important result is that the degeneracies of CB and VB first excited states (“CB 1P” and “HH 

1P”) are lifted by the coupling to remote bands. The same result was obtained for QD with 

C4v geometry [16]. It is not related to atomistic, strain or piezoelectric effects [10] but simply 

to the fact that the symmetry of the system in the 8-band description is represented by the zF  

quantum number instead of the irreducible representations of the C∞v symmetry group.  

If the strain field is calculated using a continuum mechanical model (elasticity), the 

axial approximation (symmetry reduction from C4v to C∞v) consists in defining an effective 

modulus C , then C
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of  material is usually called "transverse isotropic". Notice that this approximation is much 

less restrictive than the “full isotropic” approximation usually proposed [11] (for the rest of 

the paper, 
2

CC
C 1211 −= ). Our new proposition is also to use the components of  strain tensor 

rzzzrr εεεε ϕϕ ,,,   adapted to cylindrical coordinates (r ,ϕϕϕϕ , z ) instead of cartesian ones: 
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bulk Hamiltonian [1], we propose also to introduce a new axial approximation. This 

approximation will be applied for the εR  term by analogy to the unstrained Hamiltonian : 
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R rrrr ϕεεϕεε ϕϕϕϕε −−−= . In order to keep the 8x8 Hamiltonian 

in a block diagonal, we propose to replace in εεεεR  only, the coefficients containing the shear 

deformation potentials b and d by a mean value 
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other components of the strained Hamiltonian can be given in cylindrical coordinates without 

adding any more approximations : 
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Figure 2-a shows the variation of gap energy as a function of the truncation height (TH) for 

InAs/InP QD. A continuous decrease of the energy gap is predicted in good agreement with 

our previous full-3D study [9] and experimental results [13,14].  The variation of hydrostatic 

strain zzrrhydro εεεε ϕϕ ++=  (dotted line) and biaxial strain zzrrbiaxial εεεε ϕϕ 2−+= (straight 

line) is represented for a vertical line passing through the center of a full cone. It indicates that 

the confining potentials (hydrostatic strain) for HH and CB are almost constant inside the 
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conic QD, whereas LH  potential is stabilized at the top of the cone thanks to the inverted 

biaxial strain [9].  

The variation of the “CB 1S” (FZ=±1/2)-“CB 1P” (FZ=±1/2 or FZ=±3/2) and “HH 1S“ 

FZ=±3/2)-“HH 1P” (FZ=±1/2 or FZ=±5/2) energy gaps are reported on figure 3-a (the average 

values are considered for the first CB and HH excited states). A continuous increase of the 

energy difference between ground state and excited state is predicted for the CB with 

increasing TH. Indeed, the average radius is decreasing when increasing the TH for the 

chosen cone. In the VB band a maximum is reached for a TH equal to about 5nm. These 

results are also in good agreement with our previous work [9], where the energy difference 

between ground and excited state has been attributed to QD radius, although no systematic 

study of this property was performed. When the TH is increased, coupling between HH and 

LH bands (related to the gap increasing (figure 2-a) and the biaxial strain inversion figure 2-b) 

becomes more important than the effect of the average radius. 

 Figure 3-b shows the variation of the CB first excited state splitting 21F23F zz
EE ±=±= −  

(“1P splitting for electrons”) as a function of the TH. This splitting remains very small (less 

than 1meV) and is related to the couplings of the “CB 1P” excited states to VB states, mainly 

HH states. This “1P-electrons” splitting increases as the energy gap decreases. In the case of 

the VB, the first excited state splitting 25F21F zz
EE ±=±= −  (“1P splitting for holes”) remains 

small and changes sign for a TH on the order of 5nm. This is again associated to the strong 

increase of the HH-LH coupling. 

We finally propose (figure 4) a comparison between the InAs/InP and the InAs/GaAs 

system with the same QD geometry (TH=2.9nm). Due to the larger lattice mismatch in the 

InAs/GaAs case, a larger energy gap is found (0.90 eV for InAs/GaAs, and 0.78 eV for 

InAs/InP). The same trend is observed for the calculated “CB 1S”-“CB 1P” (30.6meV for 

InAs/GaAs and 26.2meV for InAs/InP) and “HH 1S“-“HH 1P” (19.7meV for InAs/GaAs and 
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16.2meV for InAs/InP) energy gaps. As a result, the CB 21F23F zz
EE ±=±= −  (0.14meV for 

InAs/GaAs and 0.27meV or InAs/InP) and VB 25F21F zz
EE ±=±= −  (0.85meV for InAs/GaAs 

and 0.95meV for InAs/InP) splittings are smaller for the InAs/GaAs QD. Figure 4-a and 

figure 4-b represents respectively the isodensity surfaces containing 75% of the total density 

for the 21±=zF  CB ground state and the 21±=zF  CB first excited state (the difference 

with the CB 23Fz ±=  first excited state is very small). It is straightforward to check that the 

spatial distribution of the electronic density has a cylindrical symmetry which is awaited for 

QD geometries corresponding to the C∞v symmetry. It is possible to introduce a symmetry 

breaking by simulating the influence of the piezoelectric potential. Within our axial model, 

the linear piezoelectric polarization 1P
r

 is equal to :  
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potential obtained after solving the Poisson equation, is applied as a perturbation to the 

21±=zF  CB and 23Fz ±=  CB first excited states. The amplitude of the piezoelectric 

potential is small for the InAs/InP QD. The resulting states (figures 4-c and 4-d) show only a 

small deviation from the cylindrical symmetry. The perturbation was then applied to the same 

states in the InAs/GaAs QD. The C2v symmetry clearly appears on figures 4-e and 4-f. This is 

due to the smaller  21F23F zz
EE ±=±= −  splitting but also to a larger piezoelectric field. This 

conclusion is not modified for this QD by the inclusion of the second order piezoelectric 

potential [10]. Within our semi-analytical approach, a simple expression is also obtained for 

the polarization related to this component :  
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In previous study [10], it was shown that, in QD with C∞v geometry, a splitting  of the 

electronic P states result either from an interface effect [10], a relaxation via the valence force 

field method [7,9,10] or a piezoelectric effect [7,9,10] , whereas continuum mechanics 

associated to effective mass models produces a vanishing splitting [13]. We show here that, in 

addition, there is a non-vanishing splitting due to the coupling with VB bands. This splitting 

which clearly appears here, because a continuum method and symmetry adapted functions are 

used, is however small, particularly in the InAs/GaAs system. We have shown also by 

comparison to our previous study [9]  that accurate results can be obtained for InAs/InP QD, 

by introducing a few new approximations to the strained 8x8 Hamiltonian. 
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Figure captions 

Figure 1 : Comparison between the CB a) and valence band (VB) b) states close to the band 

gap, in the 1-band representation on the left and in the axial 8-band representation on the 

right. The CB and VB ground states are associated respectively to  21±=zF  and 

23±=zF .  The degeneracies of CB and VB first excited states in the 1-band representation 

(“CB 1P” and “HH 1P”) are lifted by the coupling to remote bands. 

Figure 2 : a) Variation of the gap energy as a function of the truncation height (TH) for an 

InAs/InP QD.  

b) Variations of the hydrostatic strain zzrrhydro εεεε ϕϕ ++=  (dotted line) and the biaxial strain 

zzrrbiaxial εεεε ϕϕ 2−+= (straight line) along a vertical line passing through the center of a full 

cone. 

Figure 3 : a) Variations of the “CB 1S”-“CB 1P” (straight line) and “HH 1S“-“HH 1P” 

(dotted line) energy gaps as a function of the truncation height for an InAs/InP QD. 

 b) Variation of the CB and VB first excited state splittings, 21F23F zz
EE ±=±= −  (straight 

line) and 25F21F zz
EE ±=±= −  (dotted line), as a function of the truncation height for an InAs/InP 

QD.  

Figure 4 :  Comparison between the InAs/InP and the InAs/GaAs system with the same QD 

geometry (TH=2.9nm). The isodensity surfaces containing 75% of the total density are shown  

for the 21±=zF  CB ground state a) and the 21±=zF  CB first excited state b) in the 

InAs/InP QD. Isodensity surfaces containing 75% of the total density for the eigenstates c) 

and d) obtained after applying the piezoelectric potential as a perturbation to the 21±=zF  

CB and 23Fz ±=  CB first excited states in the InAs/InP QD. The same result is presented ( 

e) and f) ) for the InAs/GaAs QD. 
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FIG. 2. 
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FIG. 3.  
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FIG. 4.  

 

 

 


