Multi-objective reinforcement learning for responsive grids - Archive ouverte HAL
Article Dans Une Revue Journal of Grid Computing Année : 2010

Multi-objective reinforcement learning for responsive grids

Résumé

Grids organize resource sharing, a fundamental requirement of large scientific collaborations. Seamless integration of grids into everyday use requires responsiveness, which can be provided by elastic Clouds, in the Infrastructure as a Service (IaaS) paradigm. This paper proposes a model-free resource provisioning strategy supporting both requirements. Provisioning is modeled as a continuous action-state space, multi-objective reinforcement learning (RL) problem, under realistic hypotheses; simple utility functions capture the high level goals of users, administrators, and shareholders. The model-free approach falls under the general program of autonomic computing, where the incremental learning of the value function associated with the RL model provides the so-called feedback loop. The RL model includes an approximation of the value function through an Echo State Network. Experimental validation on a real data-set from the EGEE grid shows that introducing a moderate level of elasticity is critical to ensure a high level of user satisfaction.
Fichier principal
Vignette du fichier
RLGrid_JGC09_V7.pdf (957.71 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00491560 , version 1 (12-06-2010)

Identifiants

Citer

Julien Perez, Cecile Germain-Renaud, Balázs Kégl, Charles Loomis. Multi-objective reinforcement learning for responsive grids. Journal of Grid Computing, 2010, 8 (3), pp.473-492. ⟨10.1007/s10723-010-9161-0⟩. ⟨hal-00491560⟩
289 Consultations
587 Téléchargements

Altmetric

Partager

More