
HAL Id: hal-00491560
https://hal.science/hal-00491560v1

Submitted on 12 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-objective reinforcement learning for responsive
grids

Julien Perez, Cecile Germain-Renaud, Balázs Kégl, Charles Loomis

To cite this version:
Julien Perez, Cecile Germain-Renaud, Balázs Kégl, Charles Loomis. Multi-objective reinforcement
learning for responsive grids. Journal of Grid Computing, 2010, 8 (3), pp.473-492. �10.1007/s10723-
010-9161-0�. �hal-00491560�

https://hal.science/hal-00491560v1
https://hal.archives-ouvertes.fr


Noname manuscript No.

(will be inserted by the editor)

Multi-objective Reinforcement Learning for Responsive

Grids

Julien Perez · Cécile Germain-Renaud ·
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Abstract Grids organize resource sharing, a fundamental requirement of large scien-

tific collaborations. Seamless integration of grids into everyday use requires respon-

siveness, which can be provided by elastic Clouds, in the Infrastructure as a Service

(IaaS) paradigm. This paper proposes a model-free resource provisioning strategy sup-

porting both requirements. Provisioning is modeled as a continuous action-state space,

multi-objective reinforcement learning (RL) problem, under realistic hypotheses; simple

utility functions capture the high level goals of users, administrators, and sharehold-

ers. The model-free approach falls under the general program of autonomic computing,

where the incremental learning of the value function associated with the RL model

provides the so-called feedback loop. The RL model includes an approximation of the

value function through an Echo State Network. Experimental validation on a real data-

set from the EGEE grid shows that introducing a moderate level of elasticity is critical

to ensure a high level of user satisfaction.
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Univ. Paris-Sud and CNRS
E-mail: kegl@lal.in2p3.fr

Charles Loomis
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1 Introduction

Two approaches are currently proposed to provide computational resources at a large

scale: the grid and the cloud. In the grid model, institutions acquire resources and

make them available to e-science users; the key point is sharing, as stated by Foster et

al. in [15]: “resource providers and consumers defining clearly and carefully just what

is shared, who is allowed to share, and the conditions under which sharing occurs.” In

the cloud model, the resources are leased to users, and the key point is the capacity of

dynamic resource provisioning (on-demand availability), coined as elasticity by Amazon

EC2. Organized sharing is a fundamental requirement for large scientific collaborations

running immensely large simulations on a timescale of tens of years, such as in the High

Energy Physics (HEP) community. Responsiveness, defined as the ability to allocate

resources on-demand, is a fundamental requirement for seamless integration of the

large scale computing resources into everyday use. For instance (continuing the HEP

example), a physicist wants to analyze the outputs of the above-mentioned simulations,

or the future experimental events issued by the LHC, at his own pace. Thus, each of

these infrastructures favors a specific usage scenario. As data management is the core

of e-science (and business as well), exploiting the same infrastructure for acquiring,

storing, and analyzing data is highly desirable.

As a consequence, the Grid-Cloud convergence is actively experimented, mainly

in the IaaS (Infrastructure as a Service) paradigm. Quoting the StratusLab initiative

[27] “Using cloud technologies for resource provisioning would enhance failover and re-

dundancy solutions, provide elastic sites able to expand available resources, and permit

machine migration for flexible load balancing”. Discussing the Grid-Cloud convergence

is beyond the scope of this paper; for an in-depth comparison see [16,19]. A key point

is that the sociology and economics of the e-science make it difficult that user com-

putations could be embarked individually as images to draw from an undifferentiated

resource pool. A more likely path is that the middleware stack will be virtualized and

deployed onto resources leased by scientific institutions.

In our research, we seek to develop resource provisioning models and operational

systems that reconcile these two usage scenarios in the context of e-science. Motivated

by this general goal, this paper focuses on the specific problem of supporting workloads

that combine requests for quasi-immediate allocation of computational resources for

a limited time period (responsive requests) and requests for computational resources

whenever available (best-effort requests), on moderately elastic sites.

The exploitation model of e-science infrastructures (High Performance Computing

centers, and Grids) is dominated by the best-effort scenario, with high job through-

put as the primary performance metric. The sites’ batch schedulers are responsible for

resource allocation, with a preliminary step of matchmaking in large grids. Batch sched-

ulers efficiently serve complex fair-share patterns, at the expense of complex manual

configuration. Although, in principle, they support advance reservations, this mecha-

nism is rarely enabled, both because of the associated utilization problems [33] caused

by the need to block best effort jobs in order to reserve slots for the future reser-

vation, and also because the advance reservation simply does not match the request

for unplanned access. The batch schedulers also provide basic facilities for immediate

execution, e.g. in the PBS scheduler. In a previous work [17], we showed that these ca-

pabilities can be combined as an enabling mechanism for Virtual Reservations (VRes),

which provides responsiveness without jeopardizing utilization. Practical experience in

a supportive environment proved that the complexities of the implied configuration



3

severely limits the applicability of this scheme. Autonomic computing comes into play

here in that 1) high-level goals such as responsiveness and fair-share should be easily

tunable by system administrators, and 2) the underlying scheduling mechanism should

be able to self-adapt to the uncertainties in the environment and the trends in usage.

This paper proposes an approach that uses Reinforcement Learning (RL) as a

unified resource provisioning and scheduling (resource allocation) mechanism. In the

following, this double function (provisioning and scheduling) will be called supervision,

and the corresponding software entity the supervisor. The flexibility of an RL-based

system allows us to model the state of the resources, the jobs to be scheduled, and

the high-level objectives of the various grid actors. RL-based scheduling can seamlessly

adapt its decisions to changes in the distributions of inter-arrival time, quality of service

requirements, and resource availability. Moreover, it requires minimal prior knowledge

about the target environment including user requests and infrastructure.

We develop a general Reinforcement Learning framework with models for classes of

jobs (currently two, best-effort availability and responsiveness), for objective functions,

and for the infrastructure. Furthermore we state that introducing a moderate level

of elasticity in the resource provisioning is critical to ensure that both classes can

coexist with a high level of user satisfaction. We considerably extend our previous

work [18,30] in the same area by first getting rid of unrealistic hypotheses about perfect

knowledge of the computation characteristics, second by introducing elasticity as a key

performance factor, and finally by exploiting recent advances [21] in approximating the

value function through recurrent neural networks. This work has been developed in the

framework of the flagship EU grid infrastructure EGEE (Enabling Grid for E-SciencE)

[13] both for the grid model, and for the experimental data.

The major contributions of our paper are as follows.

– We describe a formalization of the supervision problem as a continuous action-state

space, multi-objective reinforcement learning problem, under realistic hypotheses.

– We explore implementations of the reinforcement learning framework integrating

those high level goals and explain the role of elastic allocation.

– We show experimentally that our RL-based supervisor achieves responsiveness

without degrading utilization, as measured by several metrics related to user and

administrator satisfaction.

2 Problem Statement

2.1 The Need for Responsiveness

The need for responsiveness arises in various situations, ranging from urgent comput-

ing applications [3], where the ”limited time” might be quite high, to truly interactive

applications involving computational steering, in which the individual task durations

are extremely small [17]; another example is workflows where sequential supervision

tasks are on the critical path [14]. Major industry players acknowledge interactivity as

a critical requirement for enlarging the scope of high performance computing and invest

in this direction. Nonetheless, the general vision remains that large to massive com-

putations dominate the e-science workloads. It might be considered as a self-realizing

prediction: a long-latency software infrastructure has little appeal for tasks requiring

responsiveness. The reality is more complex: because the resources and the data are

there and because the workflows include long and short computations, users requiring
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Fig. 1 Distribution of execution time (left graph) and overhead (right graph) in the EGEE
grid.

responsiveness have little choice and do exploit the unresponsive infrastructure, albeit

with repeated requirements towards improving quality of service.

With extensive monitoring facilities already in place, the EGEE grid offers an un-

precedented opportunity to observe and gain understanding of new computing practices

of e-science. Considering it has tens of thousands of CPU’s, petabytes of storage, an

extensive coverage of scientific communities, and the perspective of sustainable devel-

opment, EGEE provides a good approximation of the current needs of e-science. The

following analysis will give empirical evidence of two facts: 1) short jobs are the “dark

matter” of e-science, and 2) improving responsiveness is required.

We analyze here more than one year of EGEE production under gLite [12], the

EGEE middleware. The data are provided by the Real Time Monitor tool [7]. They

cover all the activity of the EGEE grid monitored by gLite in the period November

2005 to January 2007 and include more than 17 million production jobs belonging to

114 Virtual Organizations (VOs). Jobs launched by operations management for testing

service availability have been removed, thus the results faithfully describe user activ-

ity. Fig. 1 (left) shows the distribution of execution times. The striking feature is the

importance of short jobs. All requests aggregated, the 70% percentile is approximately

900 seconds. These data also support our claim in the introduction that all scien-

tific communities need responsiveness. This is obvious for the biomedical community

(biomed VO), with more than 80% of short jobs. However, even the atlas VO (the

largest HEP community) features more than 50% of short jobs. Fig. 1 (right) shows

the cumulative probability distribution of V , the dimensionless relative overhead; V is

the ratio of the time spent in queue to the execution time of a job; the time spent in

the middleware stack is not included. The fact that 40% of the short jobs experience

a tenfold slowdown due to queuing delays alone indicates clearly the unresponsiveness

of the system. Thus minimizing the relative overhead will be target of the supervisors

described in the paper.

2.2 Configuration-based Responsiveness

The VRes experience is a case for autonomic computing. Responsiveness is a major

requirement of many of the mainstream users of the EGEE grid (HEP, Life Sciences)
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[5]. VRes [17] has been developed and validated in EGEE. An implementation called the

SDJ (Short Deadline Jobs) has been developed for gLite. A SDJ job requests immediate

execution by raising the SDJ flag in its submission file. The Workload Management

System (WMS) of gLite directs SDJ jobs to sites that have configured their batch

scheduler for Virtual Reservation. The modification of the WMS was minor, and is

now part of the gLite standard distribution. The reader is referred to [17] for more

details about the configuration, and how abuse of the system can be prevented. The

SDJ feature is regularly used in demonstrations (one cannot make the audience wait

while the jobs are queued) and by smart users [4,9,11]. Nonetheless, only a handful of

sites have actually enabled Virtual Reservation. The explanation lies in the “expected

return of investment” for site administrators. Enabling Virtual Reservation requires

modifying the configuration files of the local batch scheduler, which have been carefully

crafted and stabilized to answer users and institutions requirements related to access

rights and shares.

An interesting byproduct of this development is the consensus of the community on

what level of responsiveness could reasonably be expected. Some middleware penalty

is the unavoidable counterpart of a large scale system; a typical delay of two minutes

is thus considered acceptable.

Beyond the VRes example, the lack of responsiveness, and more generally the need

for flexible prioritization, together with the independent problem of fault management

presently lead to an increasing usage of overlay schedulers exploiting placeholder jobs

in EGEE and in TeraGrid as well. (For an in-depth presentation of this strategy, see

[29].)

3 The RL Framework

This section describes the Reinforcement Learning model of the supervision problem.

For the sake of completeness, the first section briefly recalls the basics of Markov

Decision Process (MDP) and RL.

3.1 Markov Decision Process and RL

A Markov Decision Process is a quadruple (S, A, P, R) where S is the set of possible

states of the system, A is the set of actions (or decisions) that can be taken, and P is

a collection of transition probabilities

Pa
ss′ = P{st+1 = s′|st = s, at = a}

that map the current state and action to the next state. The function

Ra
s,s′ : S ×A× S → R

defines the rewards earned when moving from state s to state s′ through action a.

The goal is to find a stationary policy π∗ : S → A which chooses the action to take

in each state, without knowledge of the past history (other than what is summarized

in the state). The objective is to maximize the long-term expectation of the rewards,

the so-called value function

Qπ(s, a) = Eπ

"

∞
X

k=0

γkrt+k+1|st = s, at = a

#

,
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where γ ∈ [0, 1] is a discount factor dampening the future rewards. In the scheduling

context, P and R (the environment dynamics) are unknown, so the Q function has

to approximated through repeated experiments. This is the definition of reinforcement

learning [34]: the optimal policy will be learned by interactions with the environment.

Algorithm 1 The sarsa algorithm. Q(s, a) is the value function, π̃ is the policy that

selects a∗ = arg maxaQ(s, a) with probability 1 − ǫ and an arbitrary action a with

probability ǫ, γ is the discount factor, and η is the learning rate.

Initialize Q(s, a) arbitrarily
s0 ← current system state; Choose a0 from π̃

s← s0; a← a0

REPEAT
Take action a; observe r and s′; choose a′ from π̃

Q(s, a)← Q(s, a) + η[r + γQ(s′, a′)−Q(s, a)]
s← s′; a← a′

UNTIL shutdown

The particular policy learning framework used in this work is based on sarsa, a

member of the class of temporal-difference learning algorithm (Algorithm 1). sarsa is

an on-policy learning algorithm: the approximate value function guides the selection

of the current action a, thus the reward r and the next state s′. The policy π̃ is

defined by the current approximation Q. More precisely, if a∗ is the action which

maximizes the expected reward considering the current approximation Q (that is, a∗ =

arg maxaQ(s, a)), then a∗ is selected with probability 1 − ǫ. To maintain a trade-off

between exploitation (using the knowledge gained so far) and exploration (looking for

potentially better actions), with probability 1− ǫ we select an action drawn randomly

from among all the available actions. This is the so-called ǫ-greedy strategy where the

parameter ǫ determines the exploration-exploitation trade-off.

3.2 The Supervision Models

We implemented two different Markov Decision Processes. The Scheduling MDP solves

the problem of job scheduling under the hypothesis of a fixed amount of computing

resources with the objective of minimizing the overhead (as defined in Section 2.1) and

maintaining a predefined fair-share amongst groups of users. In the Elastic Provisioning

MDP we consider that the amount of computing resources may vary within reasonable

bounds; we then ask the MDP to also make decisions about resource provisioning. The

objective in this second MDP is to minimize overhead and maximize utilization. For

simplicity, the fair-share constraint was dropped in this MDP, but we plan to integrate

it in further work.

As explained before, a reinforcement learning formalization needs to define states,

actions, and rewards for a given problem. We propose a set of variables describing

states and actions to allow the formulation of the grid scheduling problem and the

resource provisioning problems as continuous action-state space reinforcement learning

problems. The set of variables describing the state of the system is the same in the two

MDP’s but they differ in the set of actions and the definition of the reward.
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State Space: the Grid Model

A complete model of the grid would include a detailed description of each queue and

of all the resources. This would be both inadequate to the MDP framework and unre-

alistic: the dimension of the state space would become very large. Instead, the state is

represented by a the following five real-valued variables:

– the total workload of running jobs;

– the time before a resource becomes available;

– the backlog, that is, the amount of work corresponding to queued jobs;

– the number of idle machines;

– the proportion of jobs of each VO in the queues.

Is this model realistic? Any job management system provides the last two descrip-

tors at any time. The first three descriptors are related to the execution time of jobs,

thus will be discussed after the definition of the job model.

Action Space for the Scheduling MDP: the Job Model

In the first MDP each waiting job is a potential action to be chosen by the scheduler.

Thus, the action space is the set of waiting jobs. Defining the action space as the

set of waiting jobs implies that the scheduler will always select a job (if any) when

a resource becomes available. Thus, the scheduler is work-conserving. On the other

hand, if dependencies exist amongst jobs (e.g. if they are part of a workflow, or if

co-allocation is required), they should be resolved before the jobs are enqueued, as all

queued jobs are assumed to be eligible for running.

More precisely, a job is represented by two discrete and one real-valued variables:

– the type of the job (batch/interactive);

– the VO of the user who submitted the job;

– the execution time of the job (the time to complete the job without any queuing

or management overhead).

According to the sarsa algorithm (Algorithm 1), the selected job is, with high

probability, the one that maximizes the value function, which is the expected long-term

discounted reward (see below for the definition of the rewards and the computation of

the expectation), or with low probability, a random one (ǫ-greedy strategy).

Is this model realistic? The VO associated with the job is a mandatory feature in

large scale grids systems, and is available along the whole life-cycle of the job. The

interactive/batch attribute describes an input tag requesting higher quality of service.

Qualitatively, a user should tag a job as interactive when it is urgent, meaning that it

should not wait in queue . Of course, the counterpart is that such jobs should not last

long, and will be killed otherwise. If the choice between batch and interactive quality

of service is proposed by the grid environment, the knowledge of this attribute is a

realistic assumption: the interactive/batch tag will be known for each job before the

execution, and since the user has a strong interest to correctly specify it, we can trust

it. The interactive attribute has no immediate relation with the gLite interactive job

type, but is inspired from to the sdj attribute.

The binary attribute (batch/interactive) could be extended to more classes. How-

ever, in the RL framework, a meaningful finer class segmentation should define a differ-

entiated set of rewards (utility functions), for which we have no convincing examples.
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Action Space for the Elastic Provisioning MDP

The decision problem associated to elastic computing extends the scheduling framework

to adjusting the number of computing resources available for maximizing the utilization

of the resources. Thus, there are two actions in this case: a job (to be scheduled)

and a request for a specific number of processors (cores in the present setting) to be

used for the next period of time. This work sticks to the grid model where jobs are

not virtualized. Without virtualization, the range of adjustments is constrained: as

a running job cannot be suspended (e.g. for going back in a queue), the number of

resources must always be larger or equal to the number of running jobs.

In order to create a realistic model, we added two constraints. First, the exten-

sion/contraction cannot be assumed to be instantaneous. Thus, the decisions concern-

ing the size of the resource pool (number of idle machines in the state space) are taken

at a fixed frequency. Second, the administrative structure responsible for a pool (equiv-

alent of the site administrators in the rigid case) will be required to guarantee some

basic level of service in terms of a minimum number of available cores. Thus the num-

ber of cores will have a non-null lower bound. Both parameters, frequency and lower

bounds, are constants of the model.

More on the Workload Descriptors

In this work, we compare two sub-models. The oracle model assumes perfect knowl-

edge of the execution time of a job when placed in the queue. The estimated model

estimates the execution time by its median, separately for the batch and interactive

jobs, along an extended time window in the past. Although utterly unrealistic (except

in very specific cases), the oracle model provides an upper bound on the quality of the

RL-based scheduling, and resource provisioning as well. The estimated model is fully

realistic: historical data are readily available online from job management systems. The

motivation for choosing a very crude estimator is discussed in Section 7. One of the

goals of this work is precisely to show that it is efficient.

Rewards

The reward function used in the scheduling problem is a combination of the respon-

siveness utility and the fairness.

The responsiveness utility for job j is formally defined as

Wj =
execution timej

execution timej + waiting timej

. (1)

The responsiveness utility represents the reward associated with minimizing the

overhead Vj presented in Section 2.1, as Wj = (1 + Vj)
−1. In both the oracle and

estimated models, the rewards are computed when the job completes, thus when its

actual execution time and queuing delays are available. Hence, the delay separating the

action and the reward is highly variable; with their short execution time, interactive

jobs have a more immediate impact on the learning process.

The fairness represents the difference between the actual resource allocation and

the externally defined share given to each VO. The allocation process should be such

that the service received by each VO is proportional to some predefined share. If there
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are n VO’s, the shares are usually expressed as the n-vector of the percentages of the

total resources w = (w1, . . . wn). Let Skj be the fraction of the total service received

by VO k up to the election of job j. Then, the deficit distance between the optimal

allocation and the actual allocation is a good measure of the unfairness. The deficit

distance is defined as

Dj = max
k

(wk − Skj)+,

where x+ = x if x > 0 and 0 otherwise.

The unfairness is bounded above by M = maxk(wk). A normalized fairness reward

can thus be derived by a simple linear transform. If M is the maximal unfairness, the

fairness utility Fj associated to the election of job j is

Fj = 1−
Dj

M
. (2)

Some VOs may ask for less than their share. Without greedy allocation, the previous

rule leads to resource underutilization, a highly undesirable property. This classical

problem has been addressed in the framework of network allocation as well as for

processor allocation [24]), with the objective of fair excess allocation: if excess resources

do exist, they should be proportionally allocated to the active requests. These methods

could be adapted to our framework, by dynamically adjusting the wk as a function

of the actual requests. However, with greedy allocation, there is no risk of resource

underutilization (as far as there is enough overall work). On the other hand, the excess

resource can be advantageously exploited by favoring the user utility in the short term.

Thus we keep the fairness utility as defined in Eq. 2.

The reward function used in the elastic computing decision problem also uses the

responsiveness utility, but this time it is combined with the measure of resource uti-

lization. Formally, let (T1, . . . , TN ) be the successive instants of decision making, as

described in the Action Space section, with T1 = 0. Let Pk be the number of processors

allocated in the interval [Tk, Tk+1] for 1 ≤ n < N . Finally, let fn be the sum of the

execution times of jobs completed at time Tn. The utilization reward Un at time Tn is

then defined as

Un =
fn

Pn
k=0 Pk(Tk+1 − Tk)

(3)

With these definitions, all the rewards are in the [0, 1] range, thus on the same

scale. In both problems, the actual reward is a linear combination of two of the three

rewards. In the scheduling problem, the reward is defined as

Rs = λsW + (1− λs)F,

whereas in the elasticity problem, the reward is defined as

Re = λeW + (1− λe)U,

where λs, λe ∈ [0, 1] are coefficients that allow controlling the trade-off between the

rewards.
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3.3 Continuous State-Action Space and Echo State Networks

In both problems, the state-action space is continuous (real valued). As a consequence,

implementing the assignment Q(s, a) ← Q(s, a) + η[r + γQ(s′, a′) − Q(s, a)] in Al-

gorithm 1 is not immediate. The straightforward method would be to discretize the

values (binning), and use a lookup table to represent Q(s, a). However, the space di-

mensionality is high: with 7 VO’s, the state-action space for the scheduling problem is

R
(19).

The table representation would either require large bins (thus a very rough ap-

proximation) or a large number of bins that would result in excessively long training

time. The alternative is to use a non-linear continuous approximation, as proposed in

numerous works (e.g. [6,37]). The design choice then lies in the interpolation method:

one can use neural networks, Gaussian processes [31], or kernel methods, to cite a few

of the available classes of algorithms.

Whatever method is used, the simple assignment in Line 4 of the sarsa algorithm

must be replaced by a learning procedure. In the case of the neural models, there are

two possibilities: stochastic on-line learning, where the network is modified in each

iteration only using the newly acquired training example, and batch re-learning, where

the neural network is re-trained from scratch each time a new training example is added

to the training set. For the time being we are using the batch option for simplicity and

efficiency. We considered two approaches for representing the value function Q(s, a).

The first one uses an ordinary feed-forward neural net and trains it using standard

back-propagation. The second approach uses an Echo State Network (ESN) [21] from

the family of recurrent neural nets. The advantage of this latter approach is that this

network has a memory so it can represent a system that goes beyond the standard

Markovian assumption (in which it is assumed that all the past is entirely captured

by the state descriptors). The discussion of the relevance of this choice is deferred to

Section 7.

In the continuous approximation problem, learning the target Q function can be

considered as an optimization problem. However an exploration-exploitation trade-

off must be ensured during the learning process to correctly sample the expectation

reward function. In the case of continuous representation of the state/action space,

several algorithms based on gradient descent and residual minimization have shown

good efficiency and robustness in synthetic and real applications [8,?,?]. One of the

advantages of the ESN is the simplicity of the learning algorithm: a linear regression

[21] over the output weights is used to learn the target function.

In a very complex optimization landscape, running the modified sarsa algorithm

with an untrained ESN would lead to extremely bad decisions in the beginning. This

would adversely impact the performance both because of the actual scheduling of the

first jobs and because of a poor initial approximation of the value function. To overcome

this initialization issue, the RL system is pre-trained off-line with an early deadline first

policy. After a few learning sweeps using the collected rewards, the network can start

to take its own decisions and to be optimized using real rewards.
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Table 1 Synthetic workload configurations.

µ λ Mean exec. time Simulated duration
Interactive (×10−4) (×10−2) (minutes) (hours)

20% 2.48 1.23 67 136
40% 5.68 2.81 29 59
50% 7.70 3.81 22 44

4 Experimental Setup

We developed a simulation framework to evaluate the performance of RL-based re-

source allocation and scheduling. This section presents the simulation methodology,

the workloads, and the experiments.

4.1 Simulation Methodology

We perform a discrete event simulation of the complete life-cycle of jobs. The sim-

ulator is written in matlab, which greatly helped rapid prototyping of the learning

components. The events are submission, dispatch, and termination. The submission of

a job adds an entry onto a shared queue: although our simulator can manage multiple

queues, one of the goals of this work is to show that model-free methods are more

effective; the state of the art batch schedulers rely heavily on multiple queues and

prioritization amongst queues based on configuration files.

The most important event is the termination of a job which causes the manager to

select a new job to run in all cases. In realistic schedulers (and in our implementation),

the selection process is at worst on the scale of milliseconds, thus each termination is

an opportunity to select a job. In the elastic case, a termination event might also lead

to extending or contracting the resource pool. The pool size is constrained not to drop

below 30 cores, and to be stable for at least 15 minutes.

The core of the simulator is the learner. In the sarsa algorithm, the exploration-

exploitation tradeoff parameter ǫ was set to 0.05, the discount parameter γ was set to

0.8 and the learning rate η to 0.2. The reservoir of the ESN is composed by a set of 100

sigmoidal neurons, the weights are randomly fixed in [0, 1] with 10% of connectivity

between the neurons of the reservoir and 15% of connectivity between the reservoir

and the output neurons as in [21].

In all simulations, the first and last 500 jobs were dropped from the result, in order

to avoid the bias in the results introduced by the ramp-up and draining phases: the

small number of jobs in these phases is not representative of the continuous process of

arrival and departures.

4.2 The Input Workload

We analyze two workloads. The first one is the traditional M/M/P queue, and the

second one is extracted from real EGEE traces.
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Interactive Batch
No. of jobs 4480 5020

Mean (s) 160 34927
Median (s) 190 15615

Std (s) 108 78755
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Fig. 2 The EGEE workload. In the table, the statistics refer to the execution time (in seconds).
The figure shows the service request process.

The synthetic workload

The arrival process is thus Poisson with parameter λ and the execution times are

exponentially distributed with parameter µ. The so-called utilization factor ρ = λ/µ

must be less 1 in order to get a finite queuing time. The utilization factor controls the

system load. In the following, ρ is set to 0.99. The system is thus heavily loaded, which

allows the RL algorithm to demonstrate its superior performance.

The definition of interactive jobs is set to jobs with an execution time less than

15 minutes. The proportion of interactive jobs is varied across the experiments. The

value of µ follows immediately from the exponential distribution P (X > t) = e−µt.

For a given ρ, λ is then computed as µρP , where P is the number of processors. In this

experiment, P is set to 50. For all the experiments, 6000 jobs are simulated. Table 1

gives the resulting configurations; the first column gives the fraction of interactive jobs

in the workload.

The EGEE workload

The basis for the input workload is a log from EGEE, namely the log of the PBS sched-

uler of the LAL site of EGEE. The number of jobs, as well as the variety of VO present

in the log, support the empirical knowledge that this site is representative of a profile

of general usage of EGEE. Moreover, the PBS log records all EGEE jobs, whether cre-

ated through the Pilot Job scheme or by gLite. The trace has been selected from more

than a year’s worth of logs, in order to discover a segment where a) the load and the

mix of interactive and best-effort jobs is significant with respect to the optimization

goals, b) the machine pool is stable and c) the distribution of the jobs with respect

to the VOs is representative of the target fair-share. The trace covers the activity of

more than seven weeks (25 July 2006–12 September 2006). It includes more than 9000

user jobs, not counting the monitoring jobs which are executed concurrently with the

user jobs and consume virtually no resources; they were removed from the trace. All

jobs are sequential, meaning that they request only one core. Fig. 2 summarizes the

characteristics of the trace.

From this trace we had to decide which requests are tagged as either interactive

or batch, in order to simulate a situation where such requirement for QoS would be
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proposed. While the submission queue could have provided some hint, most queues

include jobs with the full range of execution times. This is due to the fact that the

queues are mostly organized along VO’s, not along quality of service. We decided to

tag jobs with an execution time less than 900 seconds as interactive jobs, and the other

ones as batch jobs. Otherwise, the workload is kept unchanged. The trace includes

the identifier of the target resource which is described in the PBS log as a core. In the

period use in the experiments, the number of available cores is fairly constant (P = 81).

The extended timescale of the trace offers the opportunity to test the capacity

of the RL-based supervisor to adapt to changing conditions. The large value of the

standard deviation in fig. 2 is a first indicator of high variability. The graph in Fig. 2

shows the process of service requests. The service request is the average of the requests

for CPU time over a given time interval (here 10000 seconds). Obviously, the service

request is a bursty process: for instance, the peak at bin 300 amounts to 12 days of

work for the 81 cores. However, the overall utilization remains moderate, at 0.5623.

Amongst the VOs present in the trace, only six contributed significantly. The target

vector is [0.53, 0.02, 0.17, 0.08, 0.01, 0.16, 0.03]; the last share corresponds to the aggre-

gation of the small VOs. In the segment considered in the workload, the fairness utility

of the native scheduler is nearly constant (after the ramp-up phase) at 0.7.

4.3 Performance Metrics

The most important performance indicators are related to 1) the performance of the RL

method itself and 2) the satisfaction of the grid actors. The quality of the optimization

performed by the RL is measured by the distribution of the target indicator which

is the responsiveness utility W . Even if W can be satisfactorily optimized, it remains

to be proved that it correctly captures the users’ expectations regarding Quality of

Service. The user experience is dominated by the wall-clock queuing time which is

also reported. Considering fair-share, we report the difference between the fair-share

achieved by the baseline scheduler (FIFO for the synthetic workload, and native for

the EGEE workload, which is the state of the art in the domain) and the fair-share of

our scheduler computed following Eq. 2. Utilization, when relevant, is reported directly

as computed by Eq. 3.

5 Experimental Results: The Synthetic Workload

This experiment considers only the rigid case (scheduling MDP) and the oracle setting.

The goal is to show that RL is a good candidate for providing responsiveness and to

focus on the fair-share performance. We compare the performance of our method with

a baseline one, FIFO scheduling. The same input files, created from the parameters

described in Table 1, have been used for both methods.

5.1 Feasible Schedule

In this experiment, the fair share configuration is 4 VOs, with respective target weights

0.7, 0.2, 0.05 and 0.05. The schedule is feasible, meaning that the actual proportions of
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Table 2 Waiting time (in seconds) for the synthetic workload with a feasible schedule.

interactive batch
Inter FIFO RL FIFO RL

active mean std max mean std max mean std max mean std max
20% 923 552 2361 108 123 975 825 539 2383 103 112 1040
40% 690 321 1425 50 58 597 642 314 1426 454 49 515
50% 740 368 1577 38 42 368 718 360 1550 343 38 397

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1e+00 1e+01 1e+02 1e+03 1e+04

P
ro

b
a
b
ili

ty

Time (sec)

RL50
RL40
RL20
fifo50
fifo40
fifo20

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

5e+04 1e+05 2e+05 2e+05 2e+05 3e+05 4e+05 4e+05

F
a
ir
-s

h
a
re

 u
ti
lit

y

Time (sec)

fifo20
RL20

Fig. 3 Performance comparison for the feasible schedule under RL and under FIFO: (left)
cumulative distribution of the queuing delay and (right) dynamics of the fair share.

work in the overall synthetic workload are the same as the target ones. Besides, inside

each class of jobs (interactive and batch), the proportions are also close to the target.

The statistics of the waiting time are summarized in Table 2. The first column gives

the fraction of interactive jobs in the workload, as in Table 1.

These results are quite good. The RL-method clearly outperforms FIFO: the delay

is divided by more than 8 when there are 20% of interactive jobs, and by nearly 20

for the 50% case. In fact, this improvement holds, with rather similar values, for both

the interactive class and the batch class. One can suspect that favoring interactive jobs

results in nearly starving some batch ones. In fact, the standard deviation and the

maximum are also reduced by the RL method, which proves that this is not the case.

The cumulative distribution function of the waiting time is shown on Fig. 3 (left)

for the interactive class. An important result is that the delay is now acceptable for

human interaction: in the worst case (20% of interactive jobs), 90% do not wait more

than 2 minutes.

Fig. 3 (right) shows an example of the dynamics of the fair-share performance

where the horizontal axis is the simulated time and the vertical axis, the fair-share

utility. For readability, only the first experiment (20% of interactive jobs) is reported .

With a feasible schedule, in the long run, the job sample is conform to the target, thus

the FIFO scheduler achieves the requested fair share. Not surprisingly, the RL-method

is inferior to FIFO in the long run. However, the price to pay is extremely small: in

both cases, the RL method is only 3% off the ideal allocation. Besides, the RL method

converges reasonably fast, considering the grid time scale: at time 5×104 s (13 hours),

the fair share utility is above 94%. The figures for the other cases (40% and 50% of

interactive jobs) are quite similar, thus omitted.
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Fig. 4 Dynamics of the fair share with an unfeasible schedule: (left) 20% of interactive jobs
and (right) 50% of interactive jobs.

5.2 Unfeasible Schedule

The high level objectives defined by humans may be unrealistic. It is well known that

this is often the case for fair share. The target weights describe the activity of users as

expected by administrators, which may significantly differ from the actual one. In this

experiment, we consider the case where the target weights are 0.4, 0.2, 0.2 and 0.2,

while the actual weights remain 0.7, 0.2, 0.05 and 0.05. This is an unfeasible schedule,

because the first VO does not provide enough load, and the third and fourth ones

ask for more resources than they are entitled to. Nonetheless, the overall load remains

compatible with the resources: the pre-set utilization factor is the same, 0.99. In fact,

the data-set is the same as in the previous experiment; only the weight parameters in

the fair share utility function are modified.

The issue here is to assess the robustness of the RL-method in presence of unfeasible

constraints. According to Eq. 2, the maximal positive distance is 0.2−0.05 = 0.15, and

the upper bound for unfairness is 0.4, thus the best possible schedule gives a reward

of 0.625. Fig. 4 shows that the RL and FIFO achieve comparable and nearly optimal

performance in this challenging case. The results about user related metrics are very

similar to the feasible case, thus we do not repeat them.

6 Experimental Results: The EGEE Workload

6.1 The Experiments

We ran simulations using the workload described above with the following configura-

tions:

– rig-ora - The resource configuration is rigid; the number of cores P is fixed (to 81,

for comparison with EGEE). We experiment on the scheduling MDP. The actual

execution times are assumed to be known at the submission time (oracle model).

Inside this setting, the weight λs of the responsiveness utility is varied from 0 to 1.

For instance, experiment rig-ora-0.5 corresponds to λs = 0.5.
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Table 3 Statistics of rigid supervisor, EGEE workload.

Interactive Batch Queuing delay
Responsiveness Responsiveness (seconds)
mean std mean std mean std

rig-ora-0.5 0.866 0.314 0.892 0.228 1096 5137
rig-ora-1 0.869 0.308 0.893 0.226 862 3505
rig-est-0.5 0.864 0.319 0.894 0.223 1087 4838
rig-est-1 0.867 0.311 0.899 0.216 1152 5417
native 0.628 0.418 0.830 0.265 2756 8844
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Fig. 5 Distribution of the responsiveness for the rigid supervisor: (left) interactive jobs and
(right) batch jobs.

– rig-est - The resource configuration is rigid as in the previous case, but the exe-

cution times are estimated by the median of their respective categories (estimated

model).

– ela-ora and ela-est. The resource allocation is now elastic, and we experiment

on the elastic provisioning MDP, both in the oracle and estimated models. Inside

this setting, the weight of the responsiveness utility λe is varied from 0.5 (equal

weight) to 1 (utilization not considered).

Finally, we compare our results with the result of the native PBS scheduler, as recorded

in the trace, labelled nat in the Figures and Tables.

6.2 The Scheduling MDP

Table 3 presents the summary statistics for the responsiveness utility W , and Fig. 5

shows the inverse cumulative distribution functions of W (i.e. P (W > x) as a func-

tion of x). The first result is that the RL architecture (including the ESN) efficiently

optimizes the responsiveness utility. Recall that from the definition of W in (1), the

closer W is to 1, the better. Considering the summary statistics, the average respon-

siveness of the RL-based methods applied to interactive jobs is typically 0.86, while

the native scheduler achieves only 0.63. Moreover, the standard deviation is reduced

by approximately 25%. For batch jobs, the RL-scheduler does not degrade the aver-

age performance, and there is even a slight improvement. Considering the distribution

(Fig. 5), W is larger than 0.9 (that is, off the optimum by 10% or less) for 82% or more
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siveness. Right graph: dynamics of the fair-share.

of the interactive jobs. The plots have been truncated on the vertical axis for readabil-

ity. The rightmost part shows that there is an empirical threshold in the optimization

process: only very few jobs can achieve a responsiveness larger than 0.98.

Considering the weight λs, the most surprising result is its very moderate impact.

The reason is probably that, since all VOs have interactive and batch jobs, the conver-

sion from specialized queues to one large bag of tasks creates fair-share as a side-effect.

The second result is that switching from the unrealistic oracle setting to a very

simple estimation method degrades the performance only marginally. The explanation

is the bimodality of the distribution of the execution times shown in Fig. 2. These two

features, mix of interactive and batch, and bimodality, are not specific to our sample;

it can be generalized as shown by the discussion of the one-year EGEE workload in

Section 2.1.

Turning to the comparison with the native scheduler, Table 3 and Fig. 6 (left)

show that the RL scheduler improves massively the native scheduler for all the jobs

(both interactive and batch). For the interactive case, only 53% of the jobs reach a 0.9

W in the native scheduler, versus more than 80% in the RL scheduler. A lesser but

still significant improvement is reached for the batch jobs (64% vs. 77%). The batch

case exemplifies once again the potential of improvement related to switching from a

hard-coded priority system relying on separate queues and manual setting of complex

parameters to a model-free framework. The superior performance of interactive jobs

proves that the responsiveness utility was indeed a good optimization target.

We now consider the queuing delay (Table 3 and Fig. 7). As discussed in Sec-

tion 2.2, the 2 minute delay is a good landmark for assessing the potential satisfaction

(or lack thereof) of the interactive users. Under the rigid scheduler, only 86% of the

interactive jobs experience a queuing delay below 2 minutes, a much better perfor-

mance than the 63% featured by EGEE, but not fully satisfactory. The bustiness of

the service requirements, pointed out in the analysis of the service request (Fig. 2),

explains the difficulty. At some points in time, the service request is simply too high,

while resources are unused during extended periods. In the next section, we explore a

dynamic adaptation of the resource pool.

We finally examine the fairness performance. Fig. 6 (right) shows the dynamics of

the fair-share. The horizontal axis is the simulated time, and the vertical axis is the

difference between the RL and EGEE fairness utilities. Only one experiment has been

reported, the other behaving very similarly. The difference is actually negligible. Most of
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the time, the RL scheduler is marginally superior, with some excursions corresponding

to bursts.

6.3 The Elastic Provisioning MDP

Table 4 Statistics of the elastic supervisor, EGEE workload.

Interactive Batch Queuing delay
responsiveness responsiveness (seconds)
mean std mean std mean std

ela-ora-0.5 0.965 0.177 0.966 0.116 606 4245
ela-ora-1 0.971 0.160 0.966 0.121 236 2200
ela-est-0.5 0.958 0.184 0.960 0.123 458 3771
ela-est-1 0.968 0.167 0.968 0.113 3584 64

Table 4 presents the summary statistics for the responsiveness utility. Comparing

with Table 3, on average, the elastic supervision allows to reach a responsiveness util-
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Fig. 9 Dynamics of the elasticity: (left) number of cores and (right) utilization.

ity four times closer to the optimum than the rigid scheduler in the interactive case

(and three times in the batch case). Moreover, the variance is also reduced. Fig. 8,

left graph, compares the inverse cumulative distribution functions of W amongst the

two MDPs. The elastic provisioning MDP clearly outperforms the scheduling MDP:

the elastic supervision provides a responsiveness utility for interactive jobs above 0.9

for more than 94% of the jobs. Moreover, the behavior of the elastic MDP is nearly

“flat”, meaning that an overwhelming fraction of jobs achieve very comparable per-

formance with respect to W . This rightmost part shows the same threshold as in fig

5 (approximately 0.98 for all settings except “Estimated, λe = 0.1” where it is only

0.93), but with a much better probability (in the range 94%-96%), showing a very good

optimization performance in absolute terms, and a very significant improvement over

the rigid setting.

Considering the queuing delay, the elastic scheme significantly improves the quality

of service. For interactive jobs, the distribution of the queuing delay (Fig. 8, cumulative

distribution) is much more concentrated in the area below 120 seconds. More precisely,

at worst 5% of the jobs are above the 2 minutes barrier. On average, the speedup is

always above 45% (Table 4). Moreover, the impact of the settings (estimation vs oracle,

and scaling factor λe) are much more pronounced. The easiest (although unrealistic)

case for elastic provisioning is λe = 1 (utilization not considered) and oracle (execution

times known in advance). Dropping utilization gives a 2.5 times advantage on average

over a more balanced optimization target (λe = 0.5). When execution durations are not

known, the difference in the scaling factor has much less impact. However, estimation

actually improves over perfect knowledge for λe = 0.5.

Fig. 9 provides information about the dynamics of the elasticity. The leftmost plot

shows the evolution of the number of cores along time. Comparing with the service

requests (Fig. 2), the elastic provisioning MDP does adapt to the large burst after

time 3.0E6, as well as to the low level of requests in the beginning of the trace. It

is also interesting to notice that the preferred value is 90 cores, which is close, but

superior, to the actual site configuration (81 cores). The rightmost plot shows the

cumulative dynamics of the utilization (defined in Eq. 3). For clarity, only the results

of the estimated model are displayed, the oracle ones being very close. The initial peak

corresponds to the low activity period and the consequent reduction of the number of

cores. Elastic provisioning with utilization constraint enabled (ELA-EST-0.5) reaches a

nearly 100% utilization, much better than the rigid provisioning. After that, the elastic



20

and rigid curves cross, and the price to pay for the superior responsiveness becomes

apparent: the elastic utilization over the period is in the range 40%-50%, while the

rigid utilization can reach a steady 70%. Significant over-provisioning seems thus to

be required under moderate to high service requests for obtaining QoS. However, it

must be stressed that this over-provisioning is compensated by the downsizing of the

resource pool when the workload is low. In fact, the site utilization under PBS (not

shown) is close to 50%, but as an average of lower utilization in the beginning, and

higher in the period of high load. The overall cost (in units of cores) of the RL method

is thus the same as the one of the physical site but with better service to the user.

6.4 Discussion

In some configurations, the optimization for interactive jobs is defeated, as revealed

both by the threshold in the distribution of the responsiveness utility and unacceptable

delays suffered by 5% of the jobs. Indeed, from Table 4, some interactive jobs actually

experience very large delays (although in lower number than in the rigid MDP), up to

more to 104 seconds, which explains the relatively large values of the mean. Since even

the reference setting (ORA-1) keeps too many (slightly less than 4%) of the jobs above

2 minutes, the limits might be in the method itself. More precisely, the alternative is

that either the exploration/exploitation parameter is to be increased, or the impact

of the hypothesis that the machine pool can evolve only at a relatively low frequency

(15 minutes of simulated time). This parameter may limit the capacity to adapt the

resources to the bursts in the service request process (Fig. 2). The over-provisioning

mentioned before could be attributed to the same cause. It would this be worth to

experiment with a null delay, even if this setting is unrealistic. A complete simulation

is not possible, due to the prohibitive cost of solving the continuous approximation

problem (training the neural network). However, experiments on limited segments in-

dicate that the limit is actually in the method: the models learnt in the burst phases

has sufficiently long-term impact to limit the adaptation before a new burst occurs.

7 Related work

Jensen introduced time utilities functions, and models the scheduling objective as the

maximization of the aggregated utility (Utility Accrual, UA) over time, for single pro-

cessor [23] and later for multi-unit [39] real-time scheduling. The UA paradigm is a

key concept in that it formalize the goal of optimizing the productivity of the system

over time. The advances in RL, and more specifically in Temporal Difference Learning

(TDM), have relatively recently allowed harnessing the UA paradigm with implicit

prediction of the future.

Considering the application of RL to prioritization scheduling in mixed workloads,

which is the target of this paper, this domain has been explored in depth by Tesauro,

in the context of data centers [36,38]. There are many differences between the grid

and data center behavior which explains the need for the different model presented

here. The first one is the multi-objective setting. In Tesauro’s work, the issue is the

optimal allocation inside a fixed set of resources amongst distinct workloads, where

the objective is to maximize a revenue function. Our work considers a multi-objective

optimization problem: the objectives (fairness and responsiveness, or utilization and
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responsiveness) are fully heterogeneous, and the performance have to be evaluated sep-

arately. A second difference lies in the timescales, and thus the acceptable hypotheses.

The data centers considered in Tesauro’s work process Web requests; the arrival and

service process a) can be reasonably approximated by queuing models, at least on in-

terval of times significant with respect to the objective function, and b) feature short

range correlations at worst, or are even completely memoryless (Poisson arrivals). Al-

though much less experience is available for grids, the first modeling studies show a

much more complex behavior, at least multimodal (e.g. [25] models the inter-arrival

time by a modulated Poisson process), and the workload itself is likely to exhibit long

range memory [26]. As a consequence of these two differences, our variable selection is

much less parsimonious than in Tesauro’s work, because we try to represent the sys-

tem by aggregated observed quantities (on the numerical side) rather than by model

parameters, and also by categorical data (the VOs).

Scheduling exemplifies the need for extending RL from discrete to continuous value

functions. Neural networks have proved experimentally to be efficient approximators

of the value function in a purely Markovian context [37]. Convergence guarantees for

such methods are rarely available, and realistic counterexamples do exist [6], in con-

trast with the proved convergence of many update strategies, including TDM, in the

discrete case. Considering scheduling and provisioning, realistic systems, whether grids

or data centers, cannot be considered as Markovian, first in the intrinsic requirement

processes, second because of the lags introduced by the delayed measurement in the

RL learning (after job termination), and finally because of the delays introduced by

re-configuring the system (exemplified in our work by the 15 minutes minimal delay

for modifying the number of cores). Thus, introducing some memory of past states

has been recognized as necessary, for instance in [38] when applying RL to a coupled

scheduling and provisioning problem. Echo State Networks (ESN) were found to be

particularly well suited for learning and predicting time series [22]. ESN are also rela-

tively easy to train, compared to other recurrent networks. Moreover, some convergence

results for RL based on ESN approximators have been recently obtained [35]. Thus,

embedding them inside the learning process is a promising way to address problems

where the past states and actions might be relevant. An alternative way to cope with

value function approximation proposed by Vengerov [40] is learning the parameters of

a fuzzy rule-base, with applications to scheduling, either of moldable jobs or of data

transfers. However, this method implies an a priori parameterization of the scheduling

problem, which lacks flexibility.

Our work defines the utility functions ab initio. In the Service Level Agreement

(SLA) framework, they could be externally imposed. SLAs including universal terms

(variables), and analytical combinations of them [32] exactly meet the requirement for

expressing the high level objectives of users and administrators.

Finally, it may be useful to motivate the choice of the data-set from EGEE. Both

the Grid Observatory [1,28] and the Grid Workloads Archive (GWA) [10] provide

traces, albeit with different logic and goals. The available traces from the GWA are

mostly oriented towards parallel workloads and/or co-allocation, which are not directly

covered by our state-action model. Conversely, in the EGEE trace, the dependencies

(in any) have been resolved before enqueuing, thus the model does apply. Furthermore,

the analysis presented on the GWA site for the DAS-2 trace indicates that the workload

characteristics would not offer much optimization opportunities, as system is somehow

lightly loaded (average 10%, maximum 39%), and with an overwhelming majority of

short or very short jobs (90% percentile below 10 minutes).
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8 Conclusion and Perspectives

This paper shows that the combination of RL and ESN can address an issue typical

of the new challenges in Machine Learning: devising an efficient policy for a large

and noisy problem where no approximate model is available. The problem at hand also

exemplifies a real-world situation where traditional, configuration-based solutions reach

their limits, and calls for autonomic methods. The scope of the work presented here

covers two real grid scheduling situations. In the matchmaking case, the grid workload

is first dispatched to distributed sites, where actual scheduling happens; we have shown

that RL is a good candidate for this level. The method is directly applicable to overlay

or traditional schedulers, which feature a centralized job pool.

Our future work will follow two avenues. The first one will integrate a more refined

model of the switching delays, based on realistic hypothesis of future grid-over-clouds

deployments. The second one will explore more aggressive methods for favoring inter-

active jobs when the RL-based supervision appears to be lagging behind.
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