Decomposing tensors with structured matrix factors reduces to rank-1 approximations - Archive ouverte HAL
Communication Dans Un Congrès Année : 2010

Decomposing tensors with structured matrix factors reduces to rank-1 approximations

Résumé

Tensor decompositions permit to estimate in a deterministic way the parameters in a multi-linear model. Applications have been already pointed out in antenna array processing and digital communications, among others, and are extremely attractive provided some diversity at the receiver is available. As opposed to the widely used ALS algorithm, non-iterative algorithms are proposed in this paper to compute the required tensor decomposition into a sum of rank-1 terms, when some factor matrices enjoy some structure, such as block-Hankel, triangular, band, etc.
Fichier principal
Vignette du fichier
ComoST10.pdf (101.81 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00490248 , version 1 (08-06-2010)

Identifiants

  • HAL Id : hal-00490248 , version 1

Citer

Pierre Comon, Mikael Sorensen, Elias P. P. Tsigaridas. Decomposing tensors with structured matrix factors reduces to rank-1 approximations. International Conference on Acoustics, Speech and Signal Processing, Mar 2010, Dallas, United States. pp.SPTM-P4. ⟨hal-00490248⟩
400 Consultations
361 Téléchargements

Partager

More