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DECOMPOSING TENSORS WITH STRUCTURED MATRIX FACTORS
REDUCES TO RANK-1 APPROXIMATIONS

Pierre Comon, Mikael Sgrensen and Elias Tsigaridas

I3S, University of Nice, CNRS
Sophia-Antipolis, France

ABSTRACT when diversity is available at the receiver. But many other
Tensor decompositions permit to estimate in a deterministiapplication areas exisf|[8]. Factor matrices appearindpén t
way the parameters in a multi-inear model. Applicationstensor decomposition can be structurd [}] [9], and can have
have been already pointed out in antenna array processihg ate very particular structure of banded triangular Toepfit
digital communications, among others, and are extremely aBlind Identification of a SISO FIR channel is considergd [5].
tractive provided some diversity at the receiver is avdélab A contrario, the algorithms developed in the present paper
As opposed to the widely used ALS algorithm, non-iterativeexploit a structure that can be much less particular, sinise i
algorithms are proposed in this paper to compute the regdjuirecharacterized by any linear space of reduced dimension. For
tensor decomposition into a sum of rank-1 terms, when somi@stance, only one of the previous features is neceseayy,
factor matrices enjoy some structure, such as block-Hankeloeplitz, or triangular, or banded, but not the three of them
triangular, band, etc. We refer to this decomposition as “Structured Canonical De-

composition” (S@ND).
1. MOTIVATION

This contribution is motivated by the fact that there exityw 2. NOTATION
few efficient numerical algorithms for decomposing a tensofy, orqer 1o ease the reading, array symbols are denoted with
array into a sum of rank-1 terms. One can just mention th@jigtarent fonts, depending on the number of indices. Plain
case of symmetric tensors of any order but of dimension 2t qenotes scalar numbeesg.L, a; or A;;, boldface lower-
which can be decomposed with the help of a Sylvester's thes,geq genote vectorsg.x, ora, boldface uppercases denote
orem 3], or the case of third order tensors having one dimenyatrices,e.g. A, or S(7), and tensor arrays of order higher
sion equal to 2, which can be handled by computing eigeng, o 5 are represented by calligraphic letters, 7, or Z. In
vectors of a matrix penci[[2]. Even if the case of symmetricy,q remainderZ will always denote the tensor array having
complex tensors has been partially solvedﬁh [3], the comghas on its diagonal, and zeros everywhere else.

putational complexity is still significant, since a polyniain Tensors are objects defining maps from a product of linear

system of degree 2 often needs to be solved. spaces to another. Once the bases of theses spaces are fixed,
Yet, practical problems are encountered where the factqfiay are represented by arrays of coordinates. A tensor of or

matrices have a structurd [4,[3.[}, 91, such as Toeplitz, whic 4oy represented by an array wiflindices. For simplicity,

decreases the number of unknowns to be computed. We ShQ,qrs are often (somewhat abusively) assimilated witin th

in this paper that under certain conditions, the full decomp g5y representation: we shall follow this common practice

sition can be computed within a finite number of operations”  tonsor arrays aré modified in a multi-linear manner when

(assuming that a matrix SVD can). bases are changed linearly. To make it simple7ldte a 3rd

The Toeplitz structure has been already exploited in sevg yqr tensor, and leA (resp.B andC) be linear transforms

eral contributions, e.g.|:|[4], to speed up the ALS algorithm._ ... : ;
But the algorithm is still iterative with unproved convenge. acting in the first (resp. 2nd and 3rd) linear space. Then the

; new array representing the tensor can be written as
Only recently, some authors have attempted to build a non- yrep 9

iterative algorithm [[5]; however, the latter works in three o Z Ait BjmCrn Tomn
stages, and can only be applied for a single structuredrfacto !
In addition, this factor must be simultaneously Toeplitzéo

triangular and banded, which is rather restrictive. The@-alg
rithm is suboptimal in the sense that the structure in incom- T =(A,B,C)-T
pletely exploited, so that it has to be recovered by prajecti

in a third stage. : S :
" L . nd more used in the scientific community.
Tensor decompositions are very attractive in the fields o? Given two matricesA andB. one defines the Kronecker
antenna array processing [6] and digital communicatighs [7 product: ’

Imn

which can be conveniently written in a more compact form:

This way of denoting a multi-linear transformation is more
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If the latter matrices have the same number of columns, oni® asessentially uniqueand deserves to be callednonical
also defines the column-wise Kronecker product, often redecompositiofCAND) [@]. The lemma below will be use-
ferred to as the Khatri-Rao product: ful to choose the permutation and scaling matrices, wheneve

this indetermination is still present.
def
AOB =T[a(l)®bl), a@2)@b(2), -] Lemma 2 If a matrix N is invertible, then there exist a per-
[mutationII and a diagonal invertible matriA such that ma-

Yet another ingredient we shall need is the operation al i NTIA has ones on its diagonal,

lowing to store a matrix in vector fornx %' vec{X}, and _ _ o
the inverse operatio® = Unvec{x}. To fix the ideas, let Note that if factor matrices are structured, full scalingen

X be al x J matrix. We choose theec{-} map defined by terminacies may disappear, and reduce to a mere scalar scale
T(i—1)7+; = X4;. With this definition, we have the property factor (this is what happens for Toeplitz factors, as adares

that Ty _ _for any pairs of vectors andy, or subsequently). This is a significant advantage of the 5T
equi:’/flfe{rili’/U}nve)éscé vl — }ZST Y over the @ND. We shall also need the well known results

Similarly, tensor arrays can be unfolded into the so—calleé)elow' that we recall without proof.

“unfolding matrices”, or “flattening matrices”. Inthe casE | emma 3 Let 7 be a tensor, whos€AND is defined in
order 3 tensors, there are 3 such matrices. Given a téhsor Deflj__ Then its first unfolding matrix can be written as
of dimensions! x J x K, represented by an arf¥;, the

first unfolding matrix is defined as T = (A6B)CT (1)
T Lemma 4 DenoteT() = UXVH the SVD ofT'")), where
T = : Y isR x R,andVHV = Iy. Then, ifA ®B andC are full
T;.. rank in (1), there always exist x R invertible matricesM
B andN such that

whereT;.. denotes the/ x K matrix slice obtained by fixing 1 H T
the 1st index ta in the tensor array. UEXM™ =A0B and MV"=C @)
Finally, on the linear space of rectangular matrices, one UN=AGB and N 'xzvH=CT 3

defines the Hermitean scalar prodiiat B) = tracg A"B};

the latter induces the Frobenius norm. If one or several factor matrices appearing in then®©

are imposed to be structured (cf. definition below), we say
that we are dealing with a “structurech@D” (SCAND). We
shall be concerned by the classes of structured matrices tha

) , - : " form linear spaces. L€tS(¢),1 < ¢ < IR} be an orthonor-
We first define the minimal polyadic decomposition of a ten- 2l basis off x & matrices. We state the following:

sor, which will be referred to as Canonical Decomposition
(CAND)]. The definition is given in the case of a 3rd orderDefinition 5 An I x R matrix S is said to be structured if
tensor, but it extends to any order in an obvious manner. Khere exists an orthonormal basis of matri&g) such that
can be seen as a definition of the tensor rank.

3. STRUCTURED TENSOR DECOMPOSITION

w(S)
Definition 1 Let7 be a tensor of order 37 has rankR if S = Z a(l)S(0) 4)
and only if it can be expressed as a sunRaknsor products =1
between 3 vectors, and not fewer thén wherew(S) < IR is given. Such linear spaces will be de-

notedA, B, C for factor matricesA, B and C, respectively.

For instance, strictly lower triangular matrices are sted
in the above sense, as well as Toeplitz or Hankel matrices,

This holds independently of any basis. Once bases are fixeBKEW-Symmetric matrices, and certain band matrices. Aesum
the CAND of tensorT” can be equivalently written as a mul- Only matrixC is structured in[{1); then we have:
tilinear transform of the diagonal tensar.

R
T => a(p)eb(p)ec(p)

Lemma6 If the linear spaceC is stable by post-

7T=(A,B,C)-I multiplication by invertible diagonal matrices, then miatr
. M defined in Lemmﬂ4 can be imposed to have ones on its
where the factor matriceA, B and C haveR columns. diagona]_ Otherwise, one can a|WayS |mpd§el =1, or

In Definition[], it is known that factor matrices are not 7(r) =1 for somer.

defined in a unique way. In other words, each of them can
be post-multiplied by a permutatidd and an invertible di-
agonal matrix, so thal' = (ATIIA 4, BIIA 5, CIIA() - Z,
providedA 4 ApA¢c = I. When these indeterminacies gen-
erate the whole set of solutions, the decomposition is meder

Proof. From equationI]Z), it is clear that pre-multipli-
cation of CT by ATII" implies pre-multiplication ofM by

the same factor. Then by Lemrﬂa 2, one can choose scaling
matrix A and permutatiodlI so thatDiag{M} = I. Now
whenCIIA does not always belong & such a choice is not

INote that this decomposition has been named “Parafac” iresmm-  POSsible. But a scalar scale factor always subsistyg init) s
munities,i.e. Psychometry. that any non-zero entry ¥I can be set to 1, and there is at




least one in the 1st column. Another choice consists of using Proof. Since matriceg\ andB are structured, we have

this scale factor to impose a nonzero parameter in the right w(A) w(B)
hand side of[(4) to be equal to 1, eg1) = 1. 0 UN = Z Z a(i) B() (AG) ®B(j)) (8)
With a similar reasoning one can state the following i=1 j=1

which containd J R equations, using the notation tﬂ (3). Sys-
Lemma 7 If both A and B are structured in [[), butnoe,  tem (8) can be seen as a linear system.BR equations in the
one can always impose eithéf;; = 1,0ra(l) =1=B(1).  (A)w(B) unknownsX (i, j) % «,;3;. Next, from Lemma
fd, if we choose to impos&/;; = 1, we also haveR? — 1
4. NON-ITERATIVE SOLUTIONS unknownsN;;. Note that if spacesl andB are stable by di-
agonal scaling, we impose insteidag{N} = I, and we
In this section, results allowing to deflate thei to matrix ~have R* — R remaining unknowns; but let's concentrate on

SVD’s will be stated. the less favorable casé;; = 1.
Hence, linear systenfl_'l(S) contaihg R equations ink? —

Proposition 8 Let 7 be a tensor of dimensiosx J x K 1+w(A)w(B) unknowns. It generically suffices to determine

and rankR > 1, admitting theSCAND below: matricesN and consequentl§Z, as well as matriX, because
Ris nottoo large, by hypothesis.
T=(A,B,C)-T. The last step consists of computing the best rank-1 ap-
roximate of matrixX, a 3", as in the proof of Proposition
where matrixC is structured (according to Def[] 5) with E which will yield A andB. 0

w(C) < K?/4. Then, the calculation of the three matrix

: ; ; Now if all three factor matrices are structured, one can
E;C]ti?ﬁ a?&yrgﬁkéfgggfgx% aﬁ%\rl]'sngpﬁ)c%ee%rt?]f:gnmk%)fusoweghow that their estimation can be carried out with the help of

a rank-1 approximate of a 3rd order tensor, which today still
not too large, namely needs an iterative algorithm. The procedure is described in
the next section.

There is however yet another case where theiB can
be computed by solely resorting to matrix SVD’s, as shown
Proof. SinceC is structured, it can be written & = in the proposition below.

w(C) B i ", :
>i—1 () C(£) where matrice<>(£) are known. Sincd”  prgpgsition 10 Let 7 be a tensor of ordet, with 2 struc-
is of rank R > 1, C is nonzero, and from Lemn{& 6, we may t;red matrix factors. Then under the same conditions as in

sety(1) = 1. Then from Lemmd|4, matri¥1 must satisfy: Prop. [9, itsSCAND may be computed by solving an overde-
termined linear system, and by computiRg 1 rank-1 matrix

R’ -~ KR+w(C)-1<0 (5)

w(C) approximates.
MV = C(1)+ ) ) C)T, (6) : :
=2 Proof. Considerd x J x K x L tensor, and it§.J x K L

unfolding matrix:
This linear system contairfs R equations and®? +w(C) — 1 T*? = (AeB)(CoD)"
unknowns,y(k) and M;;. Since it has more equations than
unknowns, according to our assumption, it generically asimi
one solution. We have thus obtained matrisddésandC.

whereA, B, C, D all haveR columns. We assume that both
A andB are structured, which means that we have

On the other hand, we have fronf] (2) thit ' w(8)w(B) , _
UXM~! = AG®B. The last operation remaining to per- T = 3" 3" 0,8 (A1) ©B(j))(CoD)T
form is the calculation of matriceA and B, which can be i=1 j=1

done in a standard way column by column. For doing thisas in the proof of Propositiofi]9, we consider the SVD of
one notices that theth column of matrixF, f(r), is ideally matrix T(22) — USVH. Hence there exists & x R invert-
equal IOeTl(r) ®b(7_“), whose matrix unvectorization form is ;) matrix, N, such thafU N — A ©B andN-!1XVH —
a(r)b(r)". So estimates of columrgr) andb(r) of Aand ¢ oD, Our linear system containg/R equations and
B can indeed be obtained by computing the best rank-1 apz2 _ | w(A)w(B) unknowns,N;; and X,,, if we set
proximate of matrixUnvec{f (r)}. 0 Ny, = 1. Once this over-determined system has been solved
inthe Least Squares (LS) sense, matriSeendX are known.
Proposition 9 Let7 be a tensor of dimensiorisc.J x K and ~ Nextwe obtain again; andf; via a rank-one approximation
rank R, admitting theCAND: 7 = (A, B, C) - Z, where ma-  ©f matrixX. ClaoH T
trices A and B are structured, possibly with different struc- . It remains to solveN™'XV" = (CoD)"._Follow-
tures, withw(A)w(B) < I2.J2/4. Then, the calculation of N9 the fameilees as in the proof of Proposnl])n 8, denote
the three matrix factors can be achieved by solving a lineat, = V*EN"" andf(r) its columns,1 < r < R, each
system followed by one matrix rank-1 approximation, pro-of dimensioni’Z. The rest of the proof is similar to that of
vided the rank of” satisfies the necessary condition: Proposition[B, viz, the columns(r) andb(r) are obtained
by computing the best rank-1 approximation of thex L

R?— IJR+w(A)w(B) —1<0. @) matricesUnvec{f(r)}, respectively. O



5. SOLUTIONS REQUIRING HIGHER ORDER 3x1070 6.x10710
RANK-1 APPROXIMATES

Error
Error

2.x10°10 4.x1071°

From the proofs derived in the previous section, it is cleal

that our propositions can be extended to tensors having thr¢ <o ® 2.x1071 e NN
structured matrices, or to tensors of order larger than 3 On ///\

such instance is given below; the proofis not reproducee het gt T e
for reasons of space. Rank Rank

Proposition 11 Let7 be a tensor of orded and dimensions

K,, 1 < p < d, withm structured matrix factors;n > 0,  Fig. 1. Relative reconstruction error for2 x 20 x 20 tensor.

andd — m unstructured. Then itSCAND can be computed Left: one Toeplitz factor; Right: two Toeplitz factors.

by solving an overdetermined linear system, and by comput-

ing rank-1 approximations of one tensor of orderand R

tensors of ordetr! — m, provided conditions below are met:  been run fol = 20,8 < R < 19, andw = 18, with 12 sub-
diagonals and 5 superdiagonals. The computer experiments

(wy _ * 2 reported in F|g[|1 have been executed under these conditions
U w(A™) 4 HK“ =00 with one or two structured matrices, the other factors being
. =1 . drawn randomly. Se¢ [[L1] for furthee.g. noisy) results.
R? — KR+ [JwAa®)y—1 < 0 (10
(#1;[1 R };[1 ( ) - (10) 7. CONCLUDING REMARKS
Several other computer results could not be reported for rea
6. EXAMPLES sons of space; seg |11]. When two matrices are structured,
] their identification conditions are easier to meet than i th
6.1. One banded Toeplitz factor case when only one is structured. Maple and Matlab com-

Assume thei x R matrix factorC is Toeplitz lower triangular puter codes will be made available after publication.

with bandwidthw(C) = K — R + 1. If the first matrixC(1)
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