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DECOMPOSING TENSORS WITH STRUCTURED MATRIX FACTORS
REDUCES TO RANK-1 APPROXIMATIONS

Pierre Comon, Mikael Sørensen and Elias Tsigaridas

I3S, University of Nice, CNRS
Sophia-Antipolis, France

ABSTRACT
Tensor decompositions permit to estimate in a deterministic
way the parameters in a multi-linear model. Applications
have been already pointed out in antenna array processing and
digital communications, among others, and are extremely at-
tractive provided some diversity at the receiver is available.
As opposed to the widely used ALS algorithm, non-iterative
algorithms are proposed in this paper to compute the required
tensor decomposition into a sum of rank-1 terms, when some
factor matrices enjoy some structure, such as block-Hankel,
triangular, band, etc.

1. MOTIVATION

This contribution is motivated by the fact that there exist very
few efficient numerical algorithms for decomposing a tensor
array into a sum of rank-1 terms. One can just mention the
case of symmetric tensors of any order but of dimension 2,
which can be decomposed with the help of a Sylvester’s the-
orem [1], or the case of third order tensors having one dimen-
sion equal to 2, which can be handled by computing eigen-
vectors of a matrix pencil [2]. Even if the case of symmetric
complex tensors has been partially solved in [3], the com-
putational complexity is still significant, since a polynomial
system of degree 2 often needs to be solved.

Yet, practical problems are encountered where the factor
matrices have a structure [4, 5, 7, 9], such as Toeplitz, which
decreases the number of unknowns to be computed. We show
in this paper that under certain conditions, the full decompo-
sition can be computed within a finite number of operations
(assuming that a matrix SVD can).

The Toeplitz structure has been already exploited in sev-
eral contributions, e.g. [4], to speed up the ALS algorithm.
But the algorithm is still iterative with unproved convergence.
Only recently, some authors have attempted to build a non-
iterative algorithm [5]; however, the latter works in three
stages, and can only be applied for a single structured factor.
In addition, this factor must be simultaneously Toeplitz lower
triangular and banded, which is rather restrictive. The algo-
rithm is suboptimal in the sense that the structure in incom-
pletely exploited, so that it has to be recovered by projection
in a third stage.

Tensor decompositions are very attractive in the fields of
antenna array processing [6] and digital communications [7],

This work has been partially supported by contract ANR-06-BLAN-
0074 ”Decotes”. The work of M. Sørensen is supported by the
EU by a Marie-Curie Fellowship (EST-SIGNAL program: http://est-
signal.i3s.unice.fr) under contract No MEST-CT-2005-021175.

when diversity is available at the receiver. But many other
application areas exist [8]. Factor matrices appearing in the
tensor decomposition can be structured [4] [9], and can have
the very particular structure of banded triangular Toeplitz if
Blind Identification of a SISO FIR channel is considered [5].
A contrario, the algorithms developed in the present paper
exploit a structure that can be much less particular, since it is
characterized by any linear space of reduced dimension. For
instance, only one of the previous features is necessary,e.g.
Toeplitz, or triangular, or banded, but not the three of them.
We refer to this decomposition as “Structured Canonical De-
composition” (SCAND).

2. NOTATION

In order to ease the reading, array symbols are denoted with
different fonts, depending on the number of indices. Plain
font denotes scalar numbers,e.g.L, ai orAij , boldface lower-
cases denote vectors,e.g.x, orα, boldface uppercases denote
matrices,e.g.A, or S(ℓ), and tensor arrays of order higher
than 2 are represented by calligraphic letters,e.g.T , or I. In
the remainder,I will always denote the tensor array having
ones on its diagonal, and zeros everywhere else.

Tensors are objects defining maps from a product of linear
spaces to another. Once the bases of theses spaces are fixed,
they are represented by arrays of coordinates. A tensor of or-
derd is represented by an array withd indices. For simplicity,
tensors are often (somewhat abusively) assimilated with their
array representation; we shall follow this common practice.

Tensor arrays are modified in a multi-linear manner when
bases are changed linearly. To make it simple, letT be a 3rd
order tensor, and letA (resp.B andC) be linear transforms
acting in the first (resp. 2nd and 3rd) linear space. Then the
new array representing the tensor can be written as

T ′

ijk =
∑

ℓmn

AiℓBjmCkn Tℓmn

which can be conveniently written in a more compact form:

T ′ = (A,B,C) · T

This way of denoting a multi-linear transformation is more
and more used in the scientific community.

Given two matricesA andB, one defines the Kronecker
product:

A⊗B
def
=





A11B A12B · · ·
A21B A22B · · ·

...
...



 ,



If the latter matrices have the same number of columns, one
also defines the column-wise Kronecker product, often re-
ferred to as the Khatri-Rao product:

A⊙B
def
= [ a(1)⊗b(1) , a(2)⊗b(2) , · · · ] .

Yet another ingredient we shall need is the operation al-

lowing to store a matrix in vector form,x
def
= vec{X}, and

the inverse operation,X = Unvec{x}. To fix the ideas, let
X be aI × J matrix. We choose thevec{·} map defined by
x(i−1)J+j = Xij . With this definition, we have the property
thatvec{xyT} = x⊗y, for any pairs of vectorsx andy, or
equivalentlyUnvec{x⊗y} = xyT.

Similarly, tensor arrays can be unfolded into the so-called
“unfolding matrices”, or “flattening matrices”. In the caseof
order 3 tensors, there are 3 such matrices. Given a tensorT
of dimensionsI × J × K, represented by an arryTijk, the
first unfolding matrix is defined as

T(1) =





T1::

...
TI::





whereTi:: denotes theJ ×K matrix slice obtained by fixing
the 1st index toi in the tensor array.

Finally, on the linear space of rectangular matrices, one
defines the Hermitean scalar product〈A,B〉 = trace{AHB};
the latter induces the Frobenius norm.

3. STRUCTURED TENSOR DECOMPOSITION

We first define the minimal polyadic decomposition of a ten-
sor, which will be referred to as Canonical Decomposition
(CAND)1. The definition is given in the case of a 3rd order
tensor, but it extends to any order in an obvious manner. It
can be seen as a definition of the tensor rank.

Definition 1 Let T be a tensor of order 3.T has rankR if
and only if it can be expressed as a sum ofR tensor products
between 3 vectors, and not fewer thanR:

T =

R
∑

p=1

a(p)⊗⊗⊗b(p)⊗⊗⊗ c(p)

This holds independently of any basis. Once bases are fixed,
theCAND of tensorT can be equivalently written as a mul-
tilinear transform of the diagonal tensorI:

T = (A,B,C) · I

where the factor matricesA, B andC haveR columns.

In Definition 1, it is known that factor matrices are not
defined in a unique way. In other words, each of them can
be post-multiplied by a permutationΠ and an invertible di-
agonal matrix, so thatT = (AΠΛA,BΠΛB,CΠΛC) · I,
providedΛAΛBΛC = I. When these indeterminacies gen-
erate the whole set of solutions, the decomposition is referred

1Note that this decomposition has been named “Parafac” in some com-
munities,i.e.Psychometry.

to asessentially unique, and deserves to be calledcanonical
decomposition(CAND) [10]. The lemma below will be use-
ful to choose the permutation and scaling matrices, whenever
this indetermination is still present.

Lemma 2 If a matrixN is invertible, then there exist a per-
mutationΠ and a diagonal invertible matrixΛ such that ma-
trix NΠΛ has ones on its diagonal.

Note that if factor matrices are structured, full scaling inde-
terminacies may disappear, and reduce to a mere scalar scale
factor (this is what happens for Toeplitz factors, as addressed
subsequently). This is a significant advantage of the SCAND
over the CAND. We shall also need the well known results
below, that we recall without proof.

Lemma 3 Let T be a tensor, whoseCAND is defined in
Def.1. Then its first unfolding matrix can be written as

T(1) = (A⊙B)CT (1)

Lemma 4 DenoteT(1) = UΣVH the SVD ofT(1), where
Σ isR ×R, andVHV = IR. Then, ifA⊙B andC are full
rank in (1), there always existR × R invertible matricesM
andN such that

UΣM−1 = A⊙B and MVH = CT (2)

UN = A⊙B and N−1ΣVH = CT (3)

If one or several factor matrices appearing in the CAND
are imposed to be structured (cf. definition below), we say
that we are dealing with a “structured CAND” (SCAND). We
shall be concerned by the classes of structured matrices that
form linear spaces. Let{S(ℓ), 1 ≤ ℓ ≤ IR} be an orthonor-
mal basis ofI ×R matrices. We state the following:

Definition 5 An I × R matrix S is said to be structured if
there exists an orthonormal basis of matricesS(ℓ) such that

S =

ω(S)
∑

ℓ=1

α(ℓ)S(ℓ) (4)

whereω(S) < IR is given. Such linear spaces will be de-
notedA,B, C for factor matricesA, B andC, respectively.

For instance, strictly lower triangular matrices are structured
in the above sense, as well as Toeplitz or Hankel matrices,
skew-symmetric matrices, and certain band matrices. Assume
only matrixC is structured in (1); then we have:

Lemma 6 If the linear space C is stable by post-
multiplication by invertible diagonal matrices, then matrix
M defined in Lemma 4 can be imposed to have ones on its
diagonal. Otherwise, one can always imposeMr1 = 1, or
γ(r) = 1 for somer.

Proof. From equation (2), it is clear that pre-multipli-
cation ofCT by ΛΠT implies pre-multiplication ofM by
the same factor. Then by Lemma 2, one can choose scaling
matrix Λ and permutationΠ so thatDiag{M} = I. Now
whenCΠΛ does not always belong toC, such a choice is not
possible. But a scalar scale factor always subsists in (1), such
that any non-zero entry ofM can be set to 1, and there is at



least one in the 1st column. Another choice consists of using
this scale factor to impose a nonzero parameter in the right
hand side of (4) to be equal to 1, e.g.γ(1) = 1.

With a similar reasoning one can state the following

Lemma 7 If bothA andB are structured in (1), but notC,
one can always impose eitherM11 = 1, orα(1) = 1 = β(1).

4. NON-ITERATIVE SOLUTIONS

In this section, results allowing to deflate the CAND to matrix
SVD’s will be stated.

Proposition 8 Let T be a tensor of dimensionsI × J × K
and rankR > 1, admitting theSCAND below:

T = (A,B,C) · I.

where matrixC is structured (according to Def. 5) with
ω(C) ≤ K2/4. Then, the calculation of the three matrix
factors may be achieved by solving a linear system followed
byR matrix rank-1 approximations, provided the rank ofT is
not too large, namely

R2 −KR+ ω(C)− 1 ≤ 0 (5)

Proof. SinceC is structured, it can be written asC =
∑ω(C)

ℓ=1 γ(ℓ)C(ℓ) where matricesC(ℓ) are known. SinceT
is of rankR > 1, C is nonzero, and from Lemma 6, we may
setγ(1) = 1. Then from Lemma 4, matrixM must satisfy:

MVH = C(1) +

ω(C)
∑

ℓ=2

γ(ℓ)C(ℓ)T, (6)

This linear system containsKR equations andR2+ω(C)−1
unknowns,γ(k) andMij . Since it has more equations than
unknowns, according to our assumption, it generically admits
one solution. We have thus obtained matricesM, andC.

On the other hand, we have from (2) thatF
def
=

UΣM−1 = A⊙B. The last operation remaining to per-
form is the calculation of matricesA andB, which can be
done in a standard way column by column. For doing this,
one notices that therth column of matrixF, f(r), is ideally
equal toa(r)⊗b(r), whose matrix unvectorization form is
a(r)b(r)T. So estimates of columnsa(r) andb(r) of A and
B can indeed be obtained by computing the best rank-1 ap-
proximate of matrixUnvec{f(r)}.

Proposition 9 LetT be a tensor of dimensionsI×J×K and
rankR, admitting theCAND: T = (A,B,C) · I, where ma-
tricesA andB are structured, possibly with different struc-
tures, withω(A)ω(B) ≤ I2J2/4. Then, the calculation of
the three matrix factors can be achieved by solving a linear
system followed by one matrix rank-1 approximation, pro-
vided the rank ofT satisfies the necessary condition:

R2 − IJ R+ ω(A)ω(B)− 1 ≤ 0. (7)

Proof. Since matricesA andB are structured, we have

UN =

ω(A)
∑

i=1

ω(B)
∑

j=1

α(i)β(j) (A(i)⊙B(j)) (8)

which containsIJR equations, using the notation of (3). Sys-
tem (8) can be seen as a linear system ofIJR equations in the

ω(A)ω(B) unknownsX(i, j)
def
= αiβj . Next, from Lemma

7, if we choose to imposeN11 = 1, we also haveR2 − 1
unknownsNij . Note that if spacesA andB are stable by di-
agonal scaling, we impose insteadDiag{N} = I, and we
haveR2 − R remaining unknowns; but let’s concentrate on
the less favorable caseN11 = 1.

Hence, linear system (8) containsIJR equations inR2 −
1+ω(A)ω(B) unknowns. It generically suffices to determine
matricesN and consequentlyC, as well as matrixX, because
R is not too large, by hypothesis.

The last step consists of computing the best rank-1 ap-
proximate of matrixX, αβT, as in the proof of Proposition
8, which will yieldA andB.

Now if all three factor matrices are structured, one can
show that their estimation can be carried out with the help of
a rank-1 approximate of a 3rd order tensor, which today still
needs an iterative algorithm. The procedure is described in
the next section.

There is however yet another case where the CAND can
be computed by solely resorting to matrix SVD’s, as shown
in the proposition below.

Proposition 10 Let T be a tensor of order4, with 2 struc-
tured matrix factors. Then under the same conditions as in
Prop. 9, itsSCAND may be computed by solving an overde-
termined linear system, and by computingR+1 rank-1 matrix
approximates.

Proof. Consider aI×J×K×L tensor, and itsIJ×KL
unfolding matrix:

T(2,2) = (A⊙B)(C⊙D)T

whereA, B, C, D all haveR columns. We assume that both
A andB are structured, which means that we have

T(2,2) =

ω(A)
∑

i=1

ω(B)
∑

j=1

αiβj (A(i)⊙B(j))(C⊙D)T

As in the proof of Proposition 9, we consider the SVD of
matrixT(2,2) = UΣVH. Hence there exists aR× R invert-
ible matrix,N, such thatUN = A⊙B andN−1ΣVH =
C⊙D. Our linear system containsIJR equations and
R2 − 1 + ω(A)ω(B) unknowns,Nij and Xpq, if we set
N11 = 1. Once this over-determined system has been solved
in the Least Squares (LS) sense, matricesN andX are known.
Next we obtain againαi andβj via a rank-one approximation
of matrixX.

It remains to solveN−1ΣVH = (C⊙D)T. Follow-
ing the same lines as in the proof of Proposition 8, denote
F = V∗ΣN−T and f(r) its columns,1 ≤ r ≤ R, each
of dimensionKL. The rest of the proof is similar to that of
Proposition 8, viz, the columnsa(r) andb(r) are obtained
by computing the best rank-1 approximation of theK × L
matricesUnvec{f(r)}, respectively.



5. SOLUTIONS REQUIRING HIGHER ORDER
RANK-1 APPROXIMATES

From the proofs derived in the previous section, it is clear
that our propositions can be extended to tensors having three
structured matrices, or to tensors of order larger than 3. One
such instance is given below; the proof is not reproduced here
for reasons of space.

Proposition 11 LetT be a tensor of orderd and dimensions
Kµ, 1 ≤ µ ≤ d, with m structured matrix factors,m > 0,
andd − m unstructured. Then itsSCAND can be computed
by solving an overdetermined linear system, and by comput-
ing rank-1 approximations of one tensor of orderm andR
tensors of orderd−m, provided conditions below are met:

m
∏

µ=1

ω(A(µ))−
1

4

∏

K2
µ ≤ 0 (9)

R2 − (

m
∏

µ=1

Kµ)R+

m
∏

µ=1

ω(A(µ))− 1 ≤ 0 (10)

6. EXAMPLES

6.1. One banded Toeplitz factor

Assume theK×R matrix factorC is Toeplitz lower triangular
with bandwidthω(C) = K − R+ 1. If the first matrixC(1)
in the basis is the identity, assumingγ(1) = 1 means that we
can assumeC has ones on its diagonal. Beside the identity
matrix I, the next basis matricesC(ℓ) have ones on theirℓth
subdiagonal, and are null elsewhere:C(ℓ)ij = δ(i − j −
ℓ), i > j, whereδ(·) denotes the Kronecker delta. In other
words:

C = I+

ω(C)
∑

ℓ=2

γ(ℓ)C(ℓ)

The remainingKR − ω(C) − 1 basis matrices may be ob-
tained in a non unique manner by completion, under the or-
thonormality constraint. The rank condition (5) becomes, as
a function ofω(C):

ω(C)2 − (K + 1)ω(C) + 2K ≤ 0

It can be checked that this condition admits solutions only
for K > 5. For instance, forK = 20, the above condition
becomes2 < ω(C) < 19.

6.2. One Hankel factor

Assume theK × R matrix factorC is Hankel. It is char-
acterized byω(C) = K + R − 1 free parameters. Theℓth
basis matrix1 ≤ ℓ ≤ ω(C) is Hankel with a single nonzero
antidiagonal, that is:C(ℓ)ij = δ(i+ j − ℓ− 1).

6.3. Two banded Toeplitz factors

We considered next a more general banded Toeplitz case. We
took two factors with the same structure, i.e.I = J and
ω(A) = ω(B) = ω. The rank condition (7) can be expressed
as a function ofω asR2−I2 R+ω2−1 ≤ 0. Simulations have

Fig. 1. Relative reconstruction error for a20×20×20 tensor.
Left: one Toeplitz factor; Right: two Toeplitz factors.

been run forI = 20, 8 ≤ R ≤ 19, andω = 18, with 12 sub-
diagonals and 5 superdiagonals. The computer experiments
reported in Fig. 1 have been executed under these conditions,
with one or two structured matrices, the other factors being
drawn randomly. See [11] for further (e.g.noisy) results.

7. CONCLUDING REMARKS

Several other computer results could not be reported for rea-
sons of space; see [11]. When two matrices are structured,
their identification conditions are easier to meet than in the
case when only one is structured. Maple and Matlab com-
puter codes will be made available after publication.
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