Sub-quadratic markov tree mixture models for probability density estimation - Archive ouverte HAL
Communication Dans Un Congrès Année : 2010

Sub-quadratic markov tree mixture models for probability density estimation

Résumé

To explore the "Perturb and Combine" idea for estimating probability densities, we study mixtures of tree structured Markov networks derived by bagging combined with the Chow and Liu maximum weight spanning tree algorithm and we try to accelerate the research procedure by reducing its computation complexity below the quadratic and keepingg similar accuracy. We empirically assess the performances of these heuristics in terms of accuracy and computation complexity, with respect to mixtures of bagged Markov trees, and single Markov tree CL built using the Chow and Liu algorithm.
Fichier principal
Vignette du fichier
SourourAmmar_compstat2010.pdf (166.08 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00487353 , version 1 (17-04-2020)

Identifiants

  • HAL Id : hal-00487353 , version 1

Citer

Sourour Ammar, Philippe Leray, Louis Wehenkel. Sub-quadratic markov tree mixture models for probability density estimation. COMPSTAT 2010, 2010, Paris, France. pp.?-?. ⟨hal-00487353⟩
110 Consultations
27 Téléchargements

Partager

More