
HAL Id: hal-00487353
https://hal.science/hal-00487353v1

Submitted on 17 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sub-quadratic markov tree mixture models for
probability density estimation

Sourour Ammar, Philippe Leray, Louis Wehenkel

To cite this version:
Sourour Ammar, Philippe Leray, Louis Wehenkel. Sub-quadratic markov tree mixture models for
probability density estimation. COMPSTAT 2010, 2010, Paris, France. pp.?-?. �hal-00487353�

https://hal.science/hal-00487353v1
https://hal.archives-ouvertes.fr

Sub-quadratic Markov tree mixture models for
probability density estimation

Sourour Ammar1, Philippe Leray1, and Louis Wehenkel2

1 Knowledge and Decision Team
Laboratoire d’Informatique de Nantes Atlantique (LINA) UMR 6241
Ecole Polytechnique de l’Université de Nantes, France,
sourour.ammar@univ-nantes.fr, philippe.leray@univ-nantes.fr

2 Department of Electrical Engineering and Computer Science & GIGA-Research,
University of Liège, Belgium, L.Wehenkel@ulg.ac.be

Abstract. To explore the “Perturb and Combine” idea for estimating probability
densities, we study mixtures of tree structured Markov networks derived by bagging
combined with the Chow and Liu maximum weight spanning tree algorithm and
we try to accelerate the research procedure by reducing its computation complexity
below the quadratic and keepingg similar accuracy.

We empirically assess the performances of these heuristics in terms of accuracy
and computation complexity, with respect to mixtures of bagged Markov trees, and
single Markov tree CL built using the Chow and Liu algorithm.

Keywords: density estimation, mixture of trees, Perturb and Combine

1 Introduction

Learning of graphical probabilistic models essentially aims at discovering a
maximal factorization of the joint density of a set of random variables ac-
cording to a graph structure, based on a random sample of joint observations
of these variables. Such a graphical probabilistic model may be used for elu-
cidating the conditional independencies holding in the data-generating dis-
tribution, for automatic reasoning under uncertainties, and for Monte-Carlo
simulations. Unfortunately, currently available optimization algorithms for
graphical model structure learning are either restrictive in the kind of dis-
tributions they search for, or of too high computational complexity to be
applicable in very high dimensional spaces. Moreover, not much is known
about the behavior of these methods in small sample conditions and, as a
matter of fact, one may suspect that they will suffer from overfitting when
the number of variables is very large and the sample size is comparatively
very small.

In the context of supervised learning, a generic framework which has led
to many fruitful innovations is called “Perturb and Combine”. Its main idea is
to on the one hand perturb in different ways the optimization algorithm used
to derive a predictor from a dataset and on the other hand to combine in some

2 Ammar, Sourour et al.

appropriate fashion a set of predictors obtained by multiple iterations of the
perturbed algorithm over the dataset. In this framework, ensembles of weakly
fitted randomized models have been studied intensively and used successfully
during the last two decades. Among the advantages of these methods, let us
quote the improved predictive accuracy of their models, and the potentially
improved scalability of their learning algorithms (e.g. Geurts et al. (2006)).

In the context of density estimation, bagging and boosting of normal dis-
tributions has been proposed by Ridgeway (2002). The link between mixture
of models and bayesian modelling framework has been described in Ammar et
al. (2009). In Ammar et al. (2008) the Perturb and Combine idea for probabil-
ity density estimation with probabilistic graphical models was first explored
by comparing large ensembles of randomly generated (directed) poly-trees
and randomly generated undirected trees. In Ammar et al. (2009) other com-
parisons were made essentially between ensembles of optimal trees derived
from bootstrap copies of the dataset by the Chow and Liu algorithm (Chow
and Liu (1968)), which is of quadratic complexity with respect to the number
of variables (called bagging of Markov trees), and mixtures of tree structures
generated in a totally randomized fashion with linear complexity in the num-
ber of variables. This work proved that Bagged ensembles of Markov trees
significantly outperform totally randomized ensembles of Markov trees, both
in terms of accuracy and speed of convergence when the number of mixture
components is increased. Thus, in the present paper we focus on our methods
with bagging and we study various manners to improve them by forcing the
complexity of the optimization level in the Chow Liu MWST algorithm to
come down below the quadratic and keeping the same accuracy. The main
idea of this work is to weaken the Chow Liu algorithm search procedure,
witch is the more expensive step, by considering only reduced ensemble of
mutual information terms choosen at random. We consider two ways to ran-
domize witch terms will be considered in the search procedure. The first one
consist on choosing totally at random these terms, the second one exploate
the result of previous iterations to choose part of considering terms. We as-
sess the accuracy of these two methods empirically on a set of synthetic test
problems in comparison to methods described in Ammar et al. (2009).

The rest of this paper is organized as follows. Section 2 recalls briefly
the principle of learning random mixtures of models and Section 3 describes
the proposed research heuristics. Section 4 collects our simulation results and
Section 5 briefly concludes and highlights some directions for further research.

2 Randomized Markov tree mixtures

Randomized Markov tree mixtures was studied in Ammar et al. (2009) and
Ammar et al. (2008) and applied to be an alternative to classical methods
of density estimation in the context of hight-dimentional spaces and small
datasets.

Sub-quadratic mixture models 3

In the space of Markov tree structures probabilistic inference (Pearl (1986))
and parameter learning are of linear complexity in the number of variables n.
Importantly, Markov tree models may be learned efficiently by the Chow and
Liu algorithm which is only quadratic in the number of vertices (variables).

Let X = {X1, . . . , Xn} be a finite set of discrete random variables, and
D = (x1, · · · , xd) be a dataset (sample) of joint observations xi = (xi

1, · · · , xi
n)

independently drawn from some data-generating density PG(X).
A mixture distribution PT̂ (X1, . . . , Xn) over a set T̂ = {T1, . . . , Tm} of m

Markov trees is defined as a convex combination of elementary Markov tree
densities, ie.

PT̂ (X) =
m∑

i=1

µiPTi
(X), (1)

where µi ∈ [0, 1] and
∑m

i=1 µi = 1, and where we leave for the sake of sim-
plicity implicit the values of the parameter sets θ̃i of the individual Markov
tree densities.

Our generic procedure for learning a random Markov tree mixture distri-
bution from a dataset D is described by algorithm 1 (Ammar et al. (2009)).
This algorithm returns the m tree-models, along with their parameters θTi

and the weights of the trees µi.

Algorithm 1 (Learning a Markov tree mixture)

1. Repeat for i = 1, · · · ,m:
(a) Draw random number ρi,
(b) Ti = DrawMarkovtree(D, ρi),
(c) θ̃Ti

= LearnPars(Ti, D, ρi)
2. (µ)m

i=1 = CompWeights((Ti, θ̃Ti
, ρi)m

i=1, D)

3. Return
(
µi, Ti, θ̃Ti

)m

i=1
.

Some versions of this algorithm procedures used in our experiments are
further discussed in Ammar et al. (2009). We concentrate in this work on
DrawMarkovtree procedure and we describe in the following section new
heuristics based on the Perturb and Combine principle in order to reduce
the complexity of previous proposed approaches.

3 DrawMarkovtree procedure sub-quatratic heuristics

We proposed in Ammar et al. (2009) variants for DrawMarkovtree procedure.
The first one randomly generates unconstrained Markov trees (by sampling
from a uniform density over the set of all Markov tree models).The second
one builds optimal tree structures by applying the MWST (Maximum Weight
Spanning Tree) structure learning algorithm (Chow and Liu (1968)) on a
random bootstrap replica of the initial learning set. We demonstrated in this
previous work that the consistently best method is the method which uses
bagging of tree structures running with a quadratic complexity.

4 Ammar, Sourour et al.

Thus, we propose to study this method and try to accelerate the learning
procedure by keeping similar accuracy. This procedure can be decomposed
in three steps : the first one consists on computing the mutual information
between each pair of variables to fill an n× n symetrical mutual information
matrix called MI, the second one consists on finding the maximum weight
spanning tree by applying the MWST algorithm (we use the Kruskal algo-
rithm), and finally the third consists on learning structure parameters.

The first step is quadratic on the number of variables (n2 terms to com-
pute) while the second step has a complexity of E log(E) where E is the num-
ber of considered edges. If the MI matrix is totally filled (E = n2 terms),
the complexity of the second step is 2 n2 log(n). The third step is linear on
the number of variables.

As we combine weak models from random trees to optimal ones learnt by
applying a maximum weight spanning tree research with the MI matrix, in
order to obtain a good density estimation, we propose here to apply again the
Perturbe and Combine principle by using intermediate models learnt with an
incomplete MI matrix. The number of terms considered K is a key parameter
to estimate the total procedure complexity.

This procedure is then described by the algorithm 2.

Algorithm 2 (Naive DrawMarkovTree Subquadratic procedure)

1. MIi = []n×n

2. Di = GenSamples(D, i),
3. Repeat for k = 1, · · · ,K:

(a) Draw random pair of number (i1, i2),
(b) MIi[i1, i2] = ComputeMI(Xi1 , Xi2)

4. Ti = CompKruskal(MIi),
5. Return Ti.

{(i1, i2)} represents a set of pair indices which are generated randomly ac-
cording to a uniform distribution and will be used to partially fill the MIi
matrix by ComputeMI. CompKruskal takes as input the partially filled MIi
and builds the corresponding maximum weight spanning tree which will be
returned by the algorithm.

We propose to consider different values of this parameter and study his
impact on the accuracy of the result model. We report in this paper simula-
tions and results for one value of the parameter K : n log(n).

If K = n log(n), then the first step complexity will be n log(n). In the
second step, we will consider E = n log(n) edges to compute the correspond-
ing maximum weight spanning tree, and then the complexity of this step will
be : E log(E) = n log(n) log(n log(n)), which is sub-quadratic and very close
to the quasi-linear.

An other idea is considered to compute sub-optimal maximum weight
spanning tree by DrawMarkovtree procedure. This idea consists in taking
advantage of the resulting Markov tree built in the previous iteration to

Sub-quadratic mixture models 5

compute the next one. Edges indices of the Markov tree built at iteration i
will be used first to fill the MIi+1 matrix of next iteration i + 1, then we
complete the K terms indices by generating them at random. This idea can
be described by algorithm 3.

Algorithm 3 (Inertial DrawMarkovTree Subquadratic procedure)

1. MIi = []n×n

2. Di = GenSamples(D, i),
3. Repeat for k = 1, · · · , nbEdges(Ti−1):

(a) (i1, i2) = GetIndices(GetEdge(Ti−1, k),
(b) MIi[i1, i2] = ComputeMI(Xi1 , Xi2)

4. Repeat for k = 1, · · · ,K − nbEdges(Ti−1):
(a) Draw random pair of number (i1, i2),
(b) MIi[i1, i2] = ComputeMI(Xi1 , Xi2)

5. Ti = CompKruskal(MIi),
6. Return Ti.

We consider 2 variants of the GenSample function used in step 2. of algo-
rithm 2 and 3. The first one uses the same original dataset in each iteration.
The second one generates a bootstrap replica of the initial dataset.

Finally, we consider two variants for the CompWeights function proposed
in Ammar et al. (2009), namely uniform weighting and Bayesian averaging.

4 Empirical simulations

4.1 Protocol

In order to evaluate the different heuristics proposed to ameliorate the reser-
ach procedure complexity, we carried out repetitive experiments for different
data-generating (or target) densities, by proceeding in the following way.

Choice of target density All our experiments were carried out with
models for a set of n = 1000 binary random variables. To choose a target
density PG(X), we first decide whether it will factorize according to a general
directed acyclic graph structure. Then we use the appropriate random struc-
ture and parameter generation algorithm described in Ammar et al. (2008)
to draw a structure and their parameters.

Generation of datasets For each target density and dataset size, we
generated 10 different datasets by sampling values of the random variables
using the Monte-Carlo method with the target structure and parameter val-
ues. We carried out simulations with dataset sizes of N = 1000 elements.
Given the total number of 2n possible configurations of our n random vari-
ables, we thus look at rather small datasets.

Learning of mixtures For a given dataset and for a given variant of the
mixture learning algorithm we generate ensemble models of growing sizes,
respectively m = 1, m = 10, and then up to m = 150 by increments of 10.

6 Ammar, Sourour et al.

This allows us to appraise the effect of the ensemble size on the quality of
the resulting model.

Accuracy evaluation The quality of any density inferred from a dataset
is evaluated by the approached Kullback-Leibler divergence between this den-
sity and the data-generating density PG(X) used to generate the dataset.

Software implementation Our various algorithms were implemented in
C++ with the Boost library (http://www.boost.org/) and APIs provided
by the ProBT c© platform (http://bayesian-programming.org).

Our generic algorithm can be declined by varying the tree generation
function (random, algorithms 2 or 3), the learning dataset (initial data D or
boostrap replica B) and the weighting coefficient (uniform or BDeu).

Table 1 summarizes the name of the different variants we will compare in
the next section.

Variants name Tree Generation Dataset Coefficients Complexity

MTU Random D Uniform Linear

MTBDeu Random D BDeu Linear

FBU Algo 2 B Uniform Sub-quadratic

FBBDeu Algo 2 B BDeu Sub-quadratic

FDU Algo 2 D Uniform Sub-quadratic

FDBDeu Algo 2 D Uniform Sub-quadratic

FRBU Algo 3 B Uniform Sub-quadratic

FRBBDeu Algo 3 B BDeu Sub-quadratic

FRDU Algo 3 D Uniform Sub-quadratic

FRDBDeu Algo 3 D BDeu Sub-quadratic

CL MWST D Uniform quadratic

Table 1. Algorithms’ variants name

4.2 Results

Figure 1 provides a representative set of learning curves corresponding to our
simulations. The horizontal axis corresponds to the number m of mixture
terms, whereas the vertical axis corresponds to the KL measures with respect
to the target density. All the curves represent average results obtained over
ten different datasets of 1000 learning samples and seven target distributions.
We thus observe in Figure 1 that our two sub-optimal tree mixture methods

are clearly outperforming the random Markov tree mixture methods MTU
and MTBDeu in terms of accuracy when we use uniform weighting schema
(FDU and FBU), but are slightly worst when we use non uniform weights.

Concerning our second proposed method, we observe from Figure 2 that
all variants outperform well the random Markov tree mixture methods (which
is linear in the number of variables) in terms of accuracy and are approach-
ing the baseline CL (which is quadratic in the number of variables) when
the number of mixture components grows. With all this sub-quadratic ap-
proaches, we also notice that the uniform weighting procedure is actually

Sub-quadratic mixture models 7

0 50 100 150
50

50.5

51

51.5

52

52.5

Number of mixture components

K
L

di
ve

rg
en

ce

MTU
MTBDeu
FBU
FBBDeu
FDU
FDBDeu

Fig. 1. Naive sub-quadratic mixtures of trees for density estimation with a DAG
target distribution. 10 experiments with a sample size of 1000 for 7 random target
distributions of 1000 variables. (lower is better).

0 50 100 150
10

15

20

25

30

35

40

45

50

55

Number of mixture elements

K
L

di
ve

rg
en

ce

MTU
MTBDeu
FDU
FRBU
FRBBDeu
FRDU
FRDBDeu
CL

Fig. 2. Inertial sub-quadratic mixtures of trees for density estimation with a DAG
target distribution. 10 experiments with a sample size of 1000 for 7 random target
distributions of 1000 variables. (lower is better).

better than the one using weights based on the posterior probabilities given
the dataset. Finally, we note that bagging principle do not provide better
results than using the original dataset in this context of hight dimensitional
problems and small datasets. All in all, the consistently best method in these
trials is the method which uses uniform mixtures of sub-optimal trees built
using the Chow and Liu algorithm on a partially fillet mutual information ma-
trix whose terms are not generated at random and using the original dataset.

From a computational point of view, our proposed methods, whose com-
plexity is n log(n) log(n log(n)) (sub-quadratic) provide better results than
the linear methods and approach the single CL method whith is quadratic.

8 Ammar, Sourour et al.

5 Summary and future works

We have proposed in this paper to apply the Perturb and Combine principle
in the context of unsupervised density estimation with graphical probabilis-
tic models by using sub-optimal models learnt with an incomplete MI matrix
and the Chow and Liu algorithm. We have presented two research heuristics
for doing this and provide sub-quadratic computation complexity. The per-
turbation was done by partially fill the MI matrix by generating at random
part of this matrix terms and use it to optimize the structure component, or
by bootstrapping data before filling the MI matrix.

The most interesting result is that our second proposed method with a
complexity very close to the quasi-linear, provides much better results than
linear randomized mixtures of Markov trees and approaches the CL method
which is quadratic in the number of variables.

As future work, complexity of our methods can be further improved by
using some linear approximation of spanning tree algorithm (Chazelle (2000))
in order to obtain a lower complexity. We also believe that the combination of
our approaches with sequential methods such as Boosting or Markov-Chain
Monte-Carlo whitch have already been applied in the context of graphical
probabilistic models, might provide a very rich avenue for the design of novel
density estimation algorithms.

References

AMMAR, S., LERAY, Ph., DEFOURNY, B. and WEHENKEL, L. (2008): High-
dimensional probability density estimation with randomized ensembles of tree
structured bayesian networks. In: Proceedings of the fourth European Workshop
on Probabilistic Graphical Models (PGM08). 9–16.

AMMAR, S., LERAY, Ph., DEFOURNY, B. and WEHENKEL, L. (2009): Prob-
ability Density Estimation by Perturbing and Combining Tree Structured
Markov Networks. In: ECSQARU ’09: Proceedings of the 10th European Con-
ference on Symbolic and Quantitative Approaches to Reasoning with Uncer-
tainty. Springer-Verlag, 156–167.

CHAZELLE, B. (2000): A minimum spanning tree algorithm with inverse-
Ackermann type complexity. ACM 47 (6), 1028-1047.

CHOW, C.K. and LIU, C.N. (1968): Approximating discrete probability distribu-
tions with dependence trees. IEEE Transactions on Information Theory 14
(3), 462-467.

GEURTS, P., ERNST, D. and WEHENKEL, L. (2006): Extremely Randomized
Trees. Journal of Machine Learning 63 (1), 3-42.

KULLBACK, S. and LEIBLER, R. (1951): On Information and Sufficiency. Annals
of Mathematical Statistics 22 (1), 79-86.

PEARL, J. (1986): Fusion, Propagation, and Structuring in Belief Networks. Arti-
ficial Intelligence 29, 241-288.

RIDGEWAY, G. (2002): Looking for lumps: boosting and bagging for density esti-
mation. Journal of Computational Statistics & Data Analysis 38 (4), 379-392.

