Stochastic Analysis of the LMS Algorithm for System Identification with Subspace Inputs - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Signal Processing Année : 2008

Stochastic Analysis of the LMS Algorithm for System Identification with Subspace Inputs

Résumé

This paper studies the behavior of the low rank LMS adaptive algorithm for the general case in which the input transformation may not capture the exact input subspace. It is shown that the Independence Theory and the independent additive noise model are not applicable to this case. A new theoretical model for the weight mean and fluctuation behaviors is developed which incorporates the correlation between successive data vectors (as opposed to the Independence Theory model). The new theory is applied to a network echo cancellation scheme which uses partial-Haar input vector transformations. Comparison of the new model predictions with Monte Carlo simulations shows good-to-excellent agreement, certainly much better than predicted by the Independence Theory based model available in the literature.
Fichier principal
Vignette du fichier
manuscript.pdf (194.48 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00474881 , version 1 (15-02-2024)

Identifiants

Citer

Neil J. Bershad, José Carlos M. Bermudez, Jean-Yves Tourneret. Stochastic Analysis of the LMS Algorithm for System Identification with Subspace Inputs. IEEE Transactions on Signal Processing, 2008, 56 (3), pp.1018-1027. ⟨10.1109/TSP.2007.908967⟩. ⟨hal-00474881⟩
79 Consultations
33 Téléchargements

Altmetric

Partager

More