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Stochastic Analysis of the LMS Algorithm for

System Identification with Subspace Inputs

Neil J. Bershad Fellow, IEEE, José Carlos M. Bermudez, Senior Member, IEEE, and Jean-Yves

Tourneret, Member, IEEE

Abstract

This paper studies the behavior of the low rank LMS adaptive algorithm for the general case in which the

input transformation may not capture the exact input subspace. It is shown that the Independence Theory and the

independent additive noise model are not applicable to this case. A new theoretical model for the weight mean and

fluctuation behaviors is developed which incorporates the correlation between successive data vectors (as opposed

to the Independence Theory model). The new theory is applied to a network echo cancellation scheme which uses

partial-Haar input vector transformations. Comparison of the new model predictions with Monte Carlo simulations

shows good-to-excellent agreement, certainly much better than predicted by the Independence Theory based model

available in the literature.

EDICS – 2-ADAPT

I. INTRODUCTION

The Least Mean Squares (LMS) algorithm is the most popular adaptive algorithm due to its simplicity and

robustness [?], [?]. It has been studied for decades, and yet its exact behavior in certain practical situations is still

to be determined.
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A recent paper [?] presented a novel scheme for identifying the impulse response of a sparse channel. An

important practical application for this scheme is in network echo cancellation (NEC). The advent of Voice over

Internet Protocol (VoIP) [?] has revived interest in the NEC problem. Communications networks must incorporate

hundreds of echo cancellers for VoIP. This usage creates almost a mandatory need for NEC solutions that use

very limited processing power. Adaptive NEC systems must identify a relatively small number of active samples

in a long impulse response [?]. The scheme proposed in [?] addressed the sparse response identification through

a very fast initial estimation of the peak of the channel’s impulse response. It consists of two adaptive filters

operating sequentially. The first adaptive filter adapts using a partial Haar transform of the input and yields an

estimate of the location of the peak of the sparse impulse response. The second adaptive filter is then centered

about this estimate. Both filters are short in comparison to the delay uncertainty of the unknown channel. This way,

two short adaptive filters are used instead of one long filter, resulting in faster overall convergence and reduced

computational complexity and storage. The choice of the Haar transformation is crucial for this application. The Haar

transformation combines a very simple wavelet implementation with an excellent time localization performance.

The latter property is important for an accurate peak location estimation.

The scheme was analyzed in detail for a structure using the LMS algorithm in both adaptive filters. However,

it can be implemented using any combination of adaptive algorithms. The analysis consisted of two major parts:

1) mean and fluctuation behavior of the weights for both LMS algorithms for i.i.d. Gaussian input data and 2)

an approximate analysis of the mean and variance of a peak delay estimator scheme. The analytic model in (1)

used the so-called independence assumption (IA) [?], [?]. A fundamental assumption in IA is that the sequence

of input vectors to the algorithm is independent and identically distributed (i.i.d.) [?]. This assumption is clearly

incorrect. However, its use in several analyses has led to important and useful conclusions about the algorithm’s

behavior. Monte Carlo simulations of the weight variance in [?] were shown to be in good agreement with the

theoretical model for an independent signal model but in significant disagreement for a tapped delay-line (TDL)

filtering structure. Such results indicate the need for improvement in the statistical analysis for the important case

of TDL filtering, when lagged input vectors are not independent.

The limitations of the IA have been studied by several authors. Studies of the LMS properties without employing
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IA started about two decades ago with convergence analyses [?, and references therein], [?]. More recently, analytical

models have been derived for the behavior of the LMS algorithm without relying on the IA. For instance, reference

[?] derived conditions for convergence of first and second moments of the adaptive weights. A recursive algorithmic

procedure was also proposed in [?], [?], [?] for the determination of the LMS algorithm behavior. An iterative

solution has also been proposed in [?] for determining the steady-state algorithm behavior in which the first and

second moments of the weight error vector are determined as a sum of partial functions [?]. This procedure has

been later extended to the analysis of the transient adaptive behavior [?]. All these analyses assume that the residual

estimation error is i.i.d..

The above and other related analyses do not take into account an important property of the scheme proposed in

[?]. The partial Haar transform yields an input to the adaptive filter which lies in a vector subspace of the unknown

system input vector space1. Consider the model depicted in Fig. 1. W o and W (n) are vectors with the impulse

responses of FIR filters. This model can be used as a standard representation of the adaptive filtering problem

[?]. In this diagram, W o is the impulse response to be identified. The lower branch W (n) represents the impulse

response of the adaptive filter. η(n) is a disturbance term that is statistically independent of the input x(n) [?].

Exact modeling implies that the optimum estimation error2 eo(n) is η(n), and thus statistically independent of x(n)

[?].

Fig. 2 shows the sparse channel echo cancellation problem studied in [?]. Zp(n) is the Partial-Haar-transformed

input signal vector. The portion of Fig. 2 within the dashed line is detailed in Fig. 3. The partial Haar transformation

results in an input vector to the Haar domain adaptive filter, Zp(n) , that is of lower dimension than the input vector

X(n) [?]. This leads to an undermodeled system identification problem [?], [?] where the residual estimation error

is correlated with the input signal. Hence, the system in Fig. 3 does not satisfy either the condition for application

of the IA or the statistical independence of the optimum estimation error and the input signal.

The problem described in Fig. 3 can be interpreted as a low rank adaptive filtering problem [?], [?], [?], [?],

[?], [?], [?] since the adaptive filter operates on a subspace of the input vector space. Low rank adaptive filtering

1To simplify the notation, the words space and subspace will be used from now on with the meanings of vector space and vector subspace,
respectively.

2eo(n) is the estimation error when W (n) equals the weight vector that minimizes E{e2(n)}.
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deals with estimation problems in which the desired signal d(n) in Fig. 3 is composed of a signal derived from a

subspace of the input vector space and an additive noise that is statistically independent of the input signal. Thus,

the order of the adaptive filter can be reduced to the minimum necessary subspace dimension for efficiency. The

reduced order basis is usually found from an analysis of the input data. If the optimal basis can be determined, the

reduced order adaptive filter leads to the same optimal performance as the full order adaptive filter but with the

least complexity. In general, a close-to-optimal basis is obtained and part of the residual estimation error power is

correlated with the input signal [?], [?].

Much of the low rank adaptive filtering literature addresses the problem of searching the optimal subspace. These

analyses focus on the least squares (LS) formulation. The LS formulation results in a simple structure based on

the properties of orthogonal transformations and eigenvalue decompositions. No analysis is generally available for

the transient behavior of the low rank LMS algorithm. Reference [?] presents a transient analysis of low rank

transform domain adaptive filtering, assuming the knowledge of the exact subspace dimension. In this case, most

of the classical results available for the LMS algorithm are readily applicable [?].

The motivation for the system studied in this paper is different from most low rank adaptive filtering studies.

Here, the transformation basis is chosen to enable a good estimate of the time location of the impulse response’s

peak with the least possible complexity. An accurate identification of the unknown response is not required. The

accurate estimate will be performed later by a second time-domain adaptive filter centered about the peak’s estimate.

Of great concern also is convergence speed. Nearly all of the time, devoted to the unknown response estimation,

is used by the second time domain adaptive filter. Thus, these are the reasons for choosing a partial (low order)

Haar (time localization) transformation – few adaptive weights and moderate accuracy for the peak estimate. The

problem studied here in a broader sense corresponds to a low rank finite impulse response (FIR) LMS adaptive

filtering problem with a suboptimal input subspace representation. Thus, the analysis results presented here are

valid for any order reducing transformation that is a projection of the input data onto an orthonormal basis.

A mathematical model is derived for the first and second order moments of the LMS weight vector. The resulting

model is more accurate than the model in [?] for the tapped delay-line structure which used an i.i.d. input vector

sequence assumption. The new model can also be used to study the transient behavior of low rank adaptive filters
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employing order reducing orthonormal input transformations and the LMS algorithm. The new analysis differs

from previous analyses in two major ways: 1) The residual estimation error is correlated in time and 2) the

residual estimation error is not statistically independent of the input signal. The new model yields good-to-excellent

agreement with Monte Carlo simulations of the mean and fluctuation behaviors of W Hp
(n) in Fig. 3.

For the structure in Fig. 3 and a tapped delay line filter, this paper shows that:

a) the optimum estimation error is correlated in time and correlated with the input regressor of the Haar-domain

adaptive filter; and

b) the adaptive filtering problem corresponds to a linear combiner with time-correlated orthogonal input signals.

A new formulation is introduced for the statistical analysis of the LMS weight vector behavior operating on a

subspace of the input signal space. This problem cannot be studied using the i.i.d. input vector sequence assumption.

The new formulation takes into account the correlation between the estimation error and the input vector.

This paper is organized as follows. Section II describes the problem studied and discusses important properties

of both the transformed input vector and the estimation error. These properties justify the need for a new analysis

approach. Section III formulates the analysis problem, presents the statistical assumptions used and introduces

a mathematical model for the adaptive weight updating. Section IV computes the weight mean and fluctuation

behavior using this solution and avoids the use of the independence assumption. Section V presents Monte Carlo

simulation results which support the theoretical approximations made in the analysis.

II. PROBLEM DESCRIPTION

This paper studies the behavior of the system in Fig. 3. The input vector is X(n) = [x(n), x(n−1), . . . , x(n−N+

1)]T . The order reducing transform is represented by a q×N matrix HM p,3 and q < N is the number of adaptive

weights in the transformed domain adaptive filter. The dimension q is chosen according to design considerations

discussed in [?]. The adaptive weights are elements of the q×1 vector W Hp
(n) = [w1(n), . . . , wq(n)]T . The input to

the transformed domain adaptive filter W Hp
(n) is the transformed q×1 input vector Zp(n) = [z1(n), . . . , zq(n)]T =

HM pX(n). The transformed domain adaptive filter attempts to estimate the desired signal d(n) which is assumed

3In keeping with the notation used in [?], the subscript M relates to the dimension of the full Haar transform matrix of which HM p is
part. The subscript p stands for partial.
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related to x(n) by

d(n) = W o
T X(n) + η(n) (1)

where W o = E[X(n)XT (n)]−1E[d(n)X(n)] is the Wiener solution for the linear estimation of d(n) from the

observations in X(n), and η(n) is zero-mean, i.i.d. and statistically independent of x(n). The estimation error

eh(n) is the error for the problem of estimating d(n) from observations of the transformed vector Zp(n).

Given the above conditions, two important properties of adaptive filtering in the transformed domain must be

clearly understood. These properties will be derived here for the particular case of the partial-Haar transformation

used in [?]. The conclusions are valid, however, for any order reducing transformation that projects the input vector

onto an orthonormal basis.

A. The Nature of Zp(n)

A full Haar transform with M = 3 (3 scales in the wavelet transform) is implemented by a matrix HM given

by [?]:

H3 = 2−
3
2


1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1√
2
√

2 −
√

2 −
√

2 0 0 0 0
0 0 0 0

√
2
√

2 −
√

2 −
√

2
2 −2 0 0 0 0 0 0
0 0 2 −2 0 0 0 0
0 0 0 0 2 −2 0 0
0 0 0 0 0 0 2 −2

 (2)

If the second scale is used for the partial Haar transformation, the 2× 8 partial matrix becomes:

H3p
= 2−

3
2


√

2
√

2 −
√

2 −
√

2 0 0 0 0

0 0 0 0
√

2
√

2 −
√

2 −
√

2

 (3)

In general, for a given value on N = 2M and considering the choice of scale s (s = 1, . . . , log2 N ) for the

partial transformation, the number of adaptive coefficients is q = N/2s. The number of nonzero elements in each

row of HM p will be 2s. For instance, if N = 1024 (M = 10), using the second scale (s = 2) leads to q = 256

coefficients, and each row of HM p will have only 4 nonzero elements.

Since Zp(n) = HM pX(n), each sequence {zi(n)}, i = 1, . . . , q, corresponding to the time evolution of the i-th

component of Zp(n) will be a linearly filtered version of the input sequence {x(n)}. Thus, the {zi(n)} are random
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sequences correlated in time. Moreover, the rows of HM p are orthogonal to each other (in the vector sense). Then,

input sequences {zi(n)} and {zj(n)}, i 6= j, are statistically orthogonal for an i.i.d. input process {x(n)}. These

sequences are the inputs to adaptive weights wi(n) and wj(n), respectively. Thus, for Rx = σ2
xIN , where IN is the

N -dimensional identity matrix, it is easy to verify that Rz = E[Zp(n)Zp
T (n)] = σ2

xIq. Also, HM pHM
T
p = Iq

[?].

B. Properties of the Estimation Error

The order reducing transformation HM p leads to transformed input vectors Zp(n) that lie in a q-dimensional

subspace spanned by the columns of HM p. HM p is a linear transformation on the input signal. Thus, the optimum

weight vector in the transformed domain4 is given by W Hpo = (HM pRxHT
M p)

−1HM pRxW o, which reduces to

W Hpo = HM pW o for white inputs.

An important consequence of undermodeling (an order reducing transformation that does not capture the exact

input subspace) is the nature of the optimum estimation error. From Fig. 3 and using the expression Zp(n) =

HM pX(n), the estimation error eh(n) is given by

eh(n) = d(n)−W T
Hp

(n)Zp(n)

= d(n)−W T
Hp

(n)HM pX(n)

(4)

Using (1) in (4) and evaluating the optimum estimation error eo(n), which corresponds to eh(n) for W Hp
=

W Hpo, yields

eo(n) =
(
W T

o −W T
HpoHM p

)
X(n) + η(n) (5)

From (5), the lagged autocorrelation of eo(n) can be easily evaluated as

E{eo(n)eo(m)} =
(
W T

o −W T
HpoHM p

)
E

{
X(n)XT (m)

}(
W o −HT

M pW Hpo

)
+ σ2

ηδ(n−m) (6)

where σ2
η is the power of η(n) and δ(n−m) = 1 for m = n and equal to zero otherwise.

4The weight vector that minimizes E{e2
h(n)} for the given transformation matrix HM p.



8 SUBMITTED TO THE IEEE TRANSACTIONS ON SIGNAL PROCESSING – MARCH 2006 – REVISED AUGUST 8, 2007.

Since E{X(n)XT (m)} 6= 0 even for white {x(n)}5, the condition for eo(n) to be uncorrelated is

W o = HT
M pW Hpo (7)

which cannot be satisfied unless W o is in the row space of HM p. This special case would correspond to the

optimal transformation, leading to a complete cancellation of the part of d(n) which is correlated with x(n). Thus,

in general, eo(n) must be considered correlated in time, while the use of the IA in (6) would lead to the erroneous

conclusion that eo(n) is uncorrelated in time.

Straightforward calculation also shows that

E{eo(m)Zp(n)} = HM pE
{

X(n)XT (m)
}(

W o −HT
M pW Hpo

)
(8)

For eo(m) to be uncorrelated with Zp(n), it is required that

W Hpo =
(
HM pE

{
X(n)XT (m)

}
HT

M p

)−1
HM pE

{
X(n)XT (m)

}
W o (9)

which is true if (7) holds or if m = n, since E
{

X(n)XT (n)
}

= Rx.6 Excluding the case of exact subspace

modeling (condition (7) satisfied), this result shows that the residual estimation error is correlated with z(n). Thus,

the use of the IA would lead to erroneous results. Statistical tests of the residual estimation error autocorrelation and

the residual estimation error and the input signal cross-correlation are frequently used in linear system identification

for model validation [?], [?].

Equations (5) and (7) show that the optimum estimation error eo(n) (for a given transformation HM p) consists

of the additive white noise η(n), statistically independent of x(n), plus a second non-zero term (except when

HM p is the exact subspace modeling transformation). This second term is correlated in time (see Eq. (6)) and

cannot be cancelled by the subspace adaptive filter. The second term is also correlated with x(n) (see Eq. (8)).

The second term is the main reason why the IA-based model derived in [?] leads to poor results for a tapped

delay line filter structure. Equations (5) and (7) also show that the analysis technique must consider the statistical

5For x(n) white, E
n

X(n)XT (m)
o
6= 0 for n− (N − 1) ≤ m ≤ n + (N − 1).

6Note that for m = n (8) becomes E{eo(n)Zp(n)} = 0, which must be satisfied by the orthogonality principle.
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correlation between the estimation error and Zp(n). Such analysis is not available in the literature and requires a

new approach.

III. FORMULATION OF THE ANALYSIS PROBLEM

This section presents the statistical analysis of the LMS adaptive algorithm under the conditions described in the

previous section. This analysis corresponds to the following adaptive filtering setup:

1) The adaptive structure is characterized as a linear combiner with q statistically orthogonal inputs zi(n),

i = 1, . . . , q;

2) The input sequences {zi(n)} are correlated in time;

3) The sequence of q × 1 input vectors Zp(n) = [z1(n), . . . , zq(n)]T is obtained from a sequence of N × 1

random vectors X(n) = [x(n), x(n− 1), . . . , x(n−N + 1)]T with N > q by the linear transformation

Zp(n) = HM pX(n) (10)

where HM p is a p×N matrix as defined in Section II-A.

A. Model Assumptions

The following analysis assumes that:

A1: The input signal x(n) is stationary, i.i.d., zero-mean and Gaussian. Thus, the input vector X(n) has autocor-

relation matrix Rx = E[X(n)XT (n)] = σ2
xIN , where IN is the N ×N identity matrix.

A2: {x(n)} and {d(m)} for all n and m are zero-mean jointly stationary Gaussian sequences.

A3: An appropriate delay has been introduced in the signal path to compensate for the extra delay introduced in

the adaptive path by the transformation.

It has been shown that the minimum delay required for a wavelet decomposition with J levels is ∆ = (NHmax
+

NHmin
)/2−J−2, where NHmax

and NHmin
are respectively the lengths of the longest and the shortest analysis filters

associated to the wavelet decomposition [?]. Implementations using linear transformations which are not wavelet

decompositions will have specific delays which should be evaluated. This is a necessary step for proper system
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implementation. Assume the correct delay has been introduced. Thus, the analysis can be performed independent

of ∆.

Input vectors X(n) and X(m) are considered statistically dependent for |n−m| < N . Thus, the IA cannot be

used. Moreover, the existing analysis techniques which avoid IA cannot be used because the residual estimation

error cannot be assumed i.i.d..

The stationary Gaussian signal model is not necessarily representative of speech, since speech is highly non-

stationary and non-Gaussian. However, the theoretical approach and results obtained with Gaussian signal models

are suggestive of the fundamental analysis and design issues [?], [?], [?], [?], [?], [?], [?]. The i.i.d. assumption for

x(n) also departs from the speech signal model. However, the problem studied corresponds to a linear combiner

with input sequences correlated in time. Thus, the following analysis already considers a form of input signal

correlation. The i.i.d. nature of the input signal x(n) limits the correlation between different input sequences to

the linear combiner. This assumption keeps the mathematical analysis problem tractable, while preserving the

time correlation property of the input sequences {zi(n)}. Furthermore, sparse systems are not restricted to speech

applications [?] and the results derived in this paper may prove useful for other applications.

The analysis here assumes that W o (see Fig. 1) has a finite impulse response. The analysis is performed in the

time domain. Thus, the analytical approach here applies to systems with any frequency response whose impulse

response can be modeled by an FIR filter.

B. A Mathematical Model

The LMS weight recursion for the transformed domain adaptive filter Fig. 3 is given by [?, Eq. (14)]

W Hp
(n + 1) = W Hp

(n) + µeh(n)Zp(n)

=
[
Iq − µZp(n)ZT

p (n)
]
W Hp

(n) + µd(n)Zp(n)

(11)

Subtracting the optimum weight vector W Hpo = HM pW o from both sides of (11) and defining V p(n) =

W Hp
(n)−W Hpo yields a recursion for V p(n),

V p(n + 1) =
[
Iq − µZp(n)ZT

p (n)
]
V p(n) + µ

[
d(n)−ZT

p (n)W Hpo

]
Zp(n). (12)
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Eq. (12) is analogous to [?, Eq. (9.46)] but is for the real rather than complex LMS algorithm. The last term

in brackets is the Wiener error (i.e. the error obtained using the optimum Wiener filter), defined as eo(n) =

d(n) − ZT
p (n)W Hpo. The expected value of the last term in (12) is E[eo(n)Zp(n)] = 0 from the orthogonality

principle.

To determine the stochastic algorithm behavior, the well-known approach [?] uses (12) to derive recursions for the

mean E[V p(n)] and the covariance matrix E[V p(n)V T
p (n)]. The problem with this approach is that the recursion

for E[V p(n)V T
p (n)] occurs only when the assumption E[X(n)XT (m)] = 0 for n 6= m is used. Otherwise, the

recursion involves E[V p(n)V T
p (m)] for n 6= m as well. If one attempts to derive a recursion for E[V p(n)V T

p (m)],

then expectations involving X(m) and V p(n) appear unless one invokes the independence assumption again.

Our approach to this analysis requires an approximation to (12) that has a closed form solution so as to avoid

the problems described above with the recursive solution. To this end, the term Zp(n)ZT
p (n) can be written as a

mean plus a fluctuating part,

Zp(n)ZT
p (n) = E

[
Zp(n)ZT

p (n)
]
+ Ψ(n) = σ2

xIq + Ψ(n). (13)

Inserting (13) in (12) yields

V p(n + 1) =
(
1− µσ2

x

)
V p(n) + µeo(n)Zp(n)− µΨ(n)V p(n). (14)

Eq. (14) can be viewed as a deterministic recursion for V p(n) driven by two random inputs: eo(n)Zp(n) and

Ψ(n)V p(n). During the beginning of the transient phase of adaptation (small n), the fluctuations of V p(n) are

small compared with E[V p(n)], and Ψ(n)V p(n) can be approximated by Ψ(n)E[V p(n)]. This approximation

becomes less accurate for moderate values of n and as the step size µ increases. Close to convergence E[V p(n)]

tends to zero and the input to the recursion can be approximated by eo(n)Zp(n) if the fluctuations in V p(n) are

sufficiently small so that7

∣∣∣{eo(n)Zp(n)
}

i

∣∣∣ � ∣∣∣{Ψ(n) {V p(n)− E[V p(n)]}
}

i

∣∣∣, i = 1, . . . , q (15)

7Condition (15) is a small fluctuation assumption, not uncommon in analysis of adaptive filters.
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where the subscript i stands for the ith component of the vector. Approximation (15) is more valid for smaller step

sizes.

Assuming (15), (14) can be approximated by the recursion

V p(n + 1) '
(
1− µσ2

x

)
V p(n) + µeo(n)Zp(n)− µΨ(n)E[V p(n)]. (16)

Eq. (16) can be used to explicitly determine the effects of E
[
Zp(n)ZT

p (m)
]
6= 0 for n 6= m on the behavior of

the weight error vector. Eq. (16) implicitly assumes that IA holds for the mean behavior of V p(n).

Viewing the last two terms on the r.h.s. of (16) as forcing terms, (16) has an explicit closed form solution

V p(n) '
(
1− µσ2

x

)n
V p(0) + µ

n−1∑
m=0

(
1− µσ2

x

)n−m−1
{

eo(m)Zp(m)−Ψ(m)E[V p(m)]
}

. (17)

Eq. (17) represents a deterministic system with random inputs and can be used to determine the response to

correlated inputs vectors Zp(m),Zp(m− 1), . . . ,Zp(m− k), k = 2, . . . , n− 1.

IV. STOCHASTIC BEHAVIOR ANALYSIS

A. Mean Weight Behavior

Averaging (17) and using the orthogonality principle,

E [V p(n)] '
(
1− µσ2

x

)n
V p(0) (18)

since E[Ψ(n)] = 0. This result coincides with that obtained from the IA model. Such coincidence is expected

since the effects of input vector cross-correlation on the mean weight analysis are ignored in the approximation

(16). Fortunately, this is not the case for the weight fluctuation behavior, as will become clear in the next section.

B. Weight Fluctuation Behavior

The covariance matrix Q(n) of V p(n) is
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Q(n) =E
{[

V p(n)− E[V p(n)]
][

V p(n)− E[V p(n)]
]T

}
=µ2

n−1∑
m=0

n−1∑
r=0

(
1− µσ2

x

)n−m−1 (
1− µσ2

x

)n−r−1

×
[
E

{
Zp(m)eo(m)eo(r)ZT

p (r) + Ψ(m)E[V p(m)]E[V T
p (r)]ΨT (r)

}
− E

{
eo(m)Zp(m)E[V T

p (r)]ΨT (r) + Ψ(m)E[V p(m)]ZT
p (r)eo(r)

}]
(19)

The evaluation of the expected values in (19) is detailed in Appendix I, and leads to

Q(n) =
(

1− a

1 + a

)
HM p

{
G0(1− a2n) +

n−1∑
ν=1

(
Gν + G−ν

)(
aν − a2na−ν

)}
HT

M p

+ (1− a)2 a2n−2HM p

[
nK0 +

n−1∑
ν=1

(n− ν)(Kν + K−ν)

]
HT

M p

+ (1− a)an−1

{
n−1∑
ν=1

T ν

(
1− an−ν

)
+

n−1∑
ν=1

T−ν

(
aν − an

)}
(20)

where

a = (1− µσ2
x) (21a)

Gν =
[
W T

o Z2F νZ2W o +
ση2

σ4
x

δ(ν)
]
F ν + F νZ2W oW

T
o Z2F ν (21b)

Kν = F νH
T
M pV p(0)V T

p (0)HM pF ν + V T
p (0)HM pF−νH

T
M pV p(0)F ν . (21c)

T ν = HM pF m−r

[
V T

p (0)HM pF r−mZ2W oIN + HT
M pV p(0)W T

o Z2F m−r

]
HT

M p (21d)

and

T−ν = HM p

[
INW T

o Z2F m−rH
T
M pV p(0) + F r−mZ2W oV

T
p (0)HM p

]
F r−mHT

M p, (21e)

with Z2 and F m−r as defined in Appendix I (Eqs. (25) and (26), respectively).
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V. SIMULATION RESULTS

To verify the accuracy of the theoretical model, several Monte Carlo simulations were carried out for different

sets of parameters. Consider the symmetric exponential channel impulse response

W o = [ar, ar−1, . . . , a, 1, a, . . . , ar−1, ar]T . (22)

for r = 32 and a = 0.5, which is located in a span of N = 1024 samples, leading to a sparse channel response.

This is the same response used in [?], and is again used here to facilitate comparison. The optimum Partial-Haar

responses W Hpo for q = 256, 128 and 64 where obtained from the dot product of W o and the rows of the

associated HM p (inserting enough zeros so that the dot product is defined). The channel bulk delay was varied

from zero to eight taps. The variable bulk delay represents the random delay of the channel with respect to the

1024-tap time span. The additive measurement noise η(n) was made equal to zero to emphasize the effects of the

rank reducing transformation on the mean square deviation.

The Partial-Haar transforms of the different channels are shown in Table I [?]8. Figs. 4–6 show the tap weight

variance over time, estimated from Monte Carlo simulations by computing tr[Q(n)] = E
{[

V p(n)−E{V p(n)}
]T

×
[
V p(n) − E[V p(n)]

]}
for q = 256, 128 and 64 and for different values of max{W Hpo}, the maximum

value of W Hpo. The step sizes used were given by µ = 0.1/(q + 2) (about 1/20 of the stability limit) and

σ2
x = 1 in all cases. The adaptive filter coefficients were initialized at W Hp

(0) = 0, or V p(0) = −W Hpo =

−HM pW o. The theoretical curves were obtained from (20). For comparison purposes, the simulations are shown

for a representative sample of the cases studied in [?] and the figures also present the plots corresponding to a

sequence of statistically independent input vectors X(n). The curves identified as “TDL” in each plot correspond

to the theoretical results obtained using (20) and the Monte Carlo simulations for a tapped delay line filter structure.

The curves identified as “Independent” correspond to the model in [?] and simulations for statistically independent

input vectors satisfying E{X(n)XT (m)} = 0 for n 6= m. Note that there is good-to-excellent agreement between

the theory and simulations, especially when one compares these results with those in [?] for the IA model. Fig. 6

(max{wHpo} = 0.3315) illustrates the difficulty of the new model to accurately predict the algorithm behavior for

8Different bulk channel delays yield different partial Haar transforms for the same impulse response. Table I presents some of these. All
results for this impulse response can be found in [?, Table I].
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large step sizes, small values of q (large scales) and small peak values of the partial-Haar transformed impulse

response. Fig. 4 shows some mismatch in the steady-state behavior between the TDL theory and simulations.

However, the independence theory model clearly does not provide good predictions, even in steady-state, for this

case. Fig. 5 shows that the accuracy of the new model is excellent throughout all phases of adaptation, especially

in steady-state. It is conjectured that the mismatch in Fig. 4 is due to the relatively small value of max{W Hpo} as

compared to that of Fig. 5. This is because max{W Hpo} displays the attenuation of W o (max{W o} = 1) caused

by the partial Haar transformation. The spreading caused by the transformation can cause a significant loss of the

peak value of the impulse response (see Table I) as seen thru the partial Haar transform. This conjecture was also

supported by simulation results obtained for the remaining cases in [?].

VI. CONCLUSIONS

This paper has developed a new theoretical model for predicting the behavior of the first and second moments

of the LMS algorithm with a tapped delay line filtering structure for a low rank system identification problem.

The analysis considered the general case of order reducing transformations which do not capture the exact input

subspace. The new theory was applied to the partial-Haar transformed adaptive filtering scheme proposed in [?]

for network echo cancellation. The theoretical predictions were found in good-to-excellent agreement with Monte

Carlo simulations. This was not the case for the theoretical model based on the Independence Theory assumption

derived in [?]. The new model can be used to better design the scheme proposed in [?] for estimating the location of

the peak of an unknown impulse response for a sparse channel. It can also be used to study the transient behavior

of low rank adaptive systems driven by the LMS algorithm and using different input subspace estimation strategies.

Finally, it is anticipated that the present analysis can be easily extended to the case of complex signals, coefficients

and transformations with the proper considerations regarding specific mathematical evaluations such as the use of

the Gaussian moment factoring theorem.
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APPENDIX I

EVALUATION OF EXPECTED VALUES IN (19)

The expectations in the third line of (19) can be factored using the Gaussian moment factoring theorem for real

variates [?, p. 318]. The first expectation can be written

E
[
Zp(m)eo(m)eo(r)ZT

p (r)
]

=E [eo(m)eo(r)]E
[
Zp(m)ZT

p (r)
]
+ E [eo(m)Zp(m)]E

[
eo(r)ZT

p (r)
]

+ E [eo(r)Zp(m)]E
[
eo(m)ZT

p (r)
]
.

(23)

The second term on the right is zero from the orthogonality principle and disappears from the summation. When

the projection onto the correct input subspace is used (and thus IA holds), the third term on the right is zero for

all r and m and the first term on the right is also zero for r 6= m. This is not the case in general, and (23) needs

to be carefully evaluated. The various terms are evaluated in Appendix II yielding

E [eo(m)eo(r)]E
[
Zp(m)ZT

p (r)
]
+ E [eo(r)Zp(m)]E

[
eo(m)ZT

p (r)
]

=σ4
x

[(
W T

o Z2F m−rZ2W o +
σ2

η

σ4
x

δ(m− r)
)
HM pF m−rH

T
M p

+ HM pF m−rZ2W oW
T
o Z2F m−rH

T
M p

]
,

(24)

where

Z2 = IN −HT
M pHM p (25)

and

F m−r =
1
σ2

x

E[X(m)XT (r)]. (26)

The expectation of the second term in the brackets in (19) can be evaluated as follows:
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E
{
Ψ(m)E[V p(m)]E[V T

p (r)]ΨT (r)
}

= E
{[

Zp(m)ZT
p (m)− σ2

xIq

]
Z1(m)ZT

1 (r)
[
Zp(r)ZT

p (r)− σ2
xIq

]}
(27)

where Z1(m) =
(
1− µσ2

x

)m
V p(0) from (18). Expanding the term in brackets yields

E
{
Ψ(m)E[V p(m)]E[V T

p (r)]ΨT (r)
}

= E
[
Zp(m)ZT

p (m)Z1(m)ZT
1 (r)Zp(r)ZT

p (r)
]
− σ4

xZ1(m)ZT
1 (r). (28)

Note that the product of the middle four factors in the expectation is equivalent to the product of two scalars so

that Gaussian moment factorization can be immediately applied, yielding

E
[
Zp(m)ZT

p (m)Z1(m)ZT
1 (r)Zp(r)ZT

p (r)
]

=E
[
Zp(m)ZT

p (m)Z1(m)
]
E

[
ZT

1 (r)Zp(r)ZT
p (r)

]
+ E

[
Zp(m)Zp

T (r)Z1(r)
]
E

[
ZT

1 (m)Zp(m)ZT
p (r)

]
+ E

[
Zp(m)ZT

p (r)
]
E

[
ZT

1 (m)Zp(m)ZT
p (r)Z1(r)

]
=σ4

x

[
Z1(m)ZT

1 (r) + HM pF m−rH
T
M pZ1(r)ZT

1 (m)HM pF m−rH
T
M p

+ ZT
1 (r)HM pF r−mHT

M pZ1(m)HM pF m−rH
T
M p

]
. (29)

Using (14), the third term within the brackets in (19) can be written as

E

{
eo(m)Zp(m)E[V T

p (r)]ΨT (r)
}

= E

{
eo(m)Zp(m)E[V T

p (r)]
[
Zp(r)ZT

p (r)− σ2
xIq

]}
(30)

Noting that eo(m) and E[V T
p (r)]Zp(r) are scalars and using the moment factorization theorem yields

E

{
eo(m)Zp(m)E[V T

p (r)]ΨT (r)
}

= E[eo(m)Zp(m)]E[V T
p (r)]E[Zp(r)ZT

p (r)− σ2
xIq]

+ E

{
eo(m)E[V T

p (r)]Zp(r)
}

E[Zp(m)ZT
p (r)] + E

{
Zp(m)E[V T

p (r)]Zp(r)
}

E[eo(m)ZT
p (r)]

(31)

The first term in (31) is zero both because the first term is zero by the orthogonality principle and because
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E[Ψ(r)] = 0. Using the expressions for eo(m) and d(n), the second term can be expanded as

E

{
eo(m)E[V T

p (r)]Zp(r)
}

E[Zp(m)ZT
p (r)]

= E[V T
p (r)]E

{[
W T

o X(m) + η(m)−ZT
p (m)W Hpo

]
Zp(r)

}
E

[
HM pX(m)XT (r)HT

M p

]
= E[V T

p (r)]E
[
Zp(r)XT (m)W o −Zp(r)ZT

p (m)W Hpo

]
σ2

xHM pF m−rH
T
M p

(32)

where the definition of F m−r and the fact that η(m) is independent and zero-mean have been used to obtain the

last expression.

The second expectation in (32) is

E
[
Zp(r)XT (m)W o −Zp(r)ZT

p (m)W Hpo

]
= σ2

x

[
HM pF r−mW o −HM pF r−mHT

M pW Hpo

]
= σ2

xHM pF r−m

[
IN −HT

M pHM p

]
W o = σ2

xHM pF r−mZ2W o

(33)

with Z2 defined below (24). Inserting (33) in (32) yields

E

{
eo(m)E[V T

p (r)]Zp(r)
}

E[Zp(m)ZT
p (r)] = σ4

xE[V T
p (r)]HM pF r−mZ2W oHM pF m−rH

T
M p (34)

for the second term in (31).

For the third term in (31), the expectation E[eo(m)ZT
p (r)] is the transpose of (33). The remaining expectation

is given by

E

{
Zp(m)E[V T

p (r)]Zp(r)
}

= E[Zp(m)ZT
p (r)]E[V p(r)] = σ2

xHM pF r−qH
T
M pE[V p(r)]. (35)

Thus, the third term in (31) is

E

{
Zp(m)E[V T

p (r)]Zp(r)
}

E[eo(m)ZT
p (r)] = σ4

xHM pF r−qH
T
M pE[V p(r)]W T

o Z2F m−rH
T
M p. (36)

Finally, entering (34) and (36) in (31), using (18) and factoring out common matrix terms from both sides yields
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E

{
eo(m)Zp(m)E[V T

p (r)]ΨT (r)
}

= −σ4
x(1− µσ2

x)rHM pF m−r

[
V T

p (0)HM pF r−mZ2W oIN + HT
M pV p(0)W T

o Z2F m−r

]
HT

M p

(37)

The last expectation in (19) is the transpose of (37) with r and m exchanged. Thus,

E

{
Ψ(m)E[V p(m)]ZT

p (r)eo(r)
}

= −σ4
x(1− µσ2

x)rHM p

[
INW T

o Z2F m−rH
T
M pV p(0) + F r−mZ2W oV

T
p (0)HM p

]
F r−mHT

M p

(38)

Inserting (29) in (28), and then using (24), (28), (37) and (38) in (19) yields

Q(n) = µ2σ4
x

n−1∑
m=0

n−1∑
r=0

(
1− µσ2

x

)n−m−1 (
1− µσ2

x

)n−r−1

×HM p



[
W T

o Z2F m−rZ2W o + σ2
η

σ2
x
δ(m− r)

]
F m−r + F m−rZ2W oW

T
o Z2F m−r

+F m−rH
T
M pZ1(r)ZT

1 (m)HM pF m−r + ZT
1 (r)HM pF r−mHT

M pZ1(m)F m−r

+(1− µσ2
x)rF m−r

[
V T

p (0)HM pF r−mZ2W oIN + HT
M pV p(0)W T

o Z2F m−r

]
+(1− µσ2

x)r
[
INW T

o Z2F m−rH
T
M pV p(0) + F r−mZ2W oV

T
p (0)HM p

]
F r−m


HT

M p.

(39)

The double sums in (39) can be simplified to single sums by a change of variable m− r = ν and an interchange

of the order of the double sum yielding (20).

APPENDIX II

EVALUATION OF (24)

Consider first

E [eo(m)eo(r)] = W T
o

[
IN −HT

M pHM p

]
E

[
X(m)XT (r)

] [
IN −HT

M pHM p

]
W o+σ2

ηδ(m− r). (40)

The matrices Z0 = HT
M pHM p and Z2 = IN−HT

M pHM p appear in many places in the subsequent calculations.

In the case of partial Haar transformations Z0 is an N×N sparse matrix with all zeros except on the main diagonal
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and the adjacent 3 or 7 or 15 off-diagonal terms for Haar 256, Haar 128 and Haar 64 transforms, respectively. Z2

is idempotent. The middle expectation term is a sparse matrix with σ2
x only on the r −m off-diagonal and zeros

elsewhere. If r −m > 0, then the upper diagonal is non-zero. If r −m < 0 , then the lower diagonal is non-zero.

When |r −m| ≥ N , the matrix is null, displaying the independence of input vectors which are separated in time

by more than the length of the delay line.

Thus, the first term in (23) is

E [eo(m)eo(r)]E
[
Zp(m)ZT

p (r)
]

=E [eo(m)eo(r)]HM pE
[
X(m)XT (r)

]
HT

M p

=σ4
x

[
W T

o Z2F m−rZ2W o +
σ2

η

σ4
x

δ(m− r)
]
HM pF m−rH

T
M p.

(41)

Now consider the third term in (23), E [eo(r)Zp(m)]E
[
eo(m)ZT

p (r)
]
. Now,

E
[
eo(m)ZT

p (r)
]

= W T
o

[
IN −HT

M pHM p

]
E

[
X(m)XT (r)

]
HT

M p

= σ2
x W T

o Z2F m−rH
T
M p

(42)

Hence,

E [eo(r)Zp(m)]E
[
eo(m)ZT

p (r)
]

= σ4
x HM pF m−rZ2W oW

T
o Z2F m−rH

T
M p. (43)

Inserting (41) and (43) in the l.h.s. of (24) leads to the r.h.s. of (24).
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Fig. 1. Standard adaptive filtering. X(n) = [x(n), . . . , x(n−N + 1)]T .

Fig. 2. Partial-Haar dual adaptive filter for sparse channels. X(n) = [x(n), . . . , x(n−N + 1)]T . Zp(n) = [z1(n), . . . , zq(n)]T .

Fig. 3. Adaptive system analyzed, corresponding to the highlighted portion (within the dashed line) in Fig. 2. W Hp(n) is the coefficient
vector of the partial Haar domain adaptive filter.



22 FIGURES

Fig. 4. Weight Variance tr[Q(n)] for q = 256, max{wHpo} = 0.375. Theory (smooth plots), 100 MC Simulations (jagged plots) - Upper
plots -Independent (theory from [?]), Lower plots -TDL (theory from (20)).

Fig. 5. Weight Variance tr[Q(n)] for q = 256, max{wHpo} = 0.5625, Theory (smooth plots), 100 MC Simulations (jagged plots) - Upper
plots -Independent (theory from [?]), Lower plots -TDL (theory from (20)).

Fig. 6. Weight Variance tr[Q(n)] for q = 128, max{wHpo} = 0.3315. Theory (smooth plots), 10 MC Simulations (jagged plots) - Upper
plots -TDL (theory from (20)), Lower plots - Independent (theory from [?]).
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TABLE I
SIGNIFICANT COEFFICIENTS OF THE PARTIAL-HAAR TRANSFORMS OF THE SPARSE RESPONSE FOR DIFFERENT BULK DELAYS

256-tap Partial-Haar
W Hpo=[0.0005,−0.0088,−0.1406,0.3750,0.00703,0.0044,0.0003]T

W Hpo=[−0.0001,−0.0022,−0.0352,−0.5625,0.2812,0.0176,0.0011,0.0001]T

128-tap Partial-Haar
W Hpo=[−0.0012,−0.3107,0.6215,0.0024]T

W Hpo=[−0.0002,−0.0388,0.3315,0.0194,0.0001]T


