Aggregation of probabilistic PCA mixtures with a variational-Bayes technique over parameters - Archive ouverte HAL
Communication Dans Un Congrès Année : 2010

Aggregation of probabilistic PCA mixtures with a variational-Bayes technique over parameters

Résumé

This paper proposes a solution to the problem of aggre- gating versatile probabilistic models, namely mixtures of probabilistic principal component analyzers. These models are a powerful generative form for capturing high-dimensional, non Gaussian, data. They simulta- neously perform mixture adjustment and dimensional- ity reduction. We demonstrate how such models may be advantageously aggregated by accessing mixture pa- rameters only, rather than original data. Aggregation is carried out through Bayesian estimation with a specific prior and an original variational scheme. Experimental results illustrate the effectiveness of the proposal.
Fichier principal
Vignette du fichier
ICPR2010-final.pdf (578.35 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-00471313 , version 1 (29-10-2014)

Identifiants

  • HAL Id : hal-00471313 , version 1

Citer

Pierrick Bruneau, Marc Gelgon, Fabien Picarougne. Aggregation of probabilistic PCA mixtures with a variational-Bayes technique over parameters. IEEE/IAPR Int. Conf. on Pattern Recognition, Aug 2010, Istambul, Turkey. pp.702 - 705. ⟨hal-00471313⟩
147 Consultations
337 Téléchargements

Partager

More