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Abstract

This paper proposes a solution to the problem of aggre-

gating versatile probabilistic models, namely mixtures

of probabilistic principal component analyzers. These

models are a powerful generative form for capturing

high-dimensional, non Gaussian, data. They simulta-

neously perform mixture adjustment and dimensional-

ity reduction. We demonstrate how such models may

be advantageously aggregated by accessing mixture pa-

rameters only, rather than original data. Aggregation is

carried out through Bayesian estimation with a specific

prior and an original variational scheme. Experimental

results illustrate the effectiveness of the proposal.

1. Introduction

This paper proposes an effective and original solution to

the problem of aggregating versatile probabilistic mod-

els, namely mixtures of probabilistic principal compo-

nent analyzers (MPPCA hereafter [8]). The contribu-

tion of the paper is a demonstration of how this aggrega-

tion can be conducted by accessing only the parameters

of the models to merge, rather than the original data.

Probabilistic PCA (PPCA) is a dimensionality reduction

technique that extends standard PCA with the follow-

ing advantages : a) since a probabilistic model is fit to

the data, Bayesian inference may be applied, in partic-

ular to determine the appropriate model complexity; b)

mixtures of such PPCA components may be built and

estimated, to capture high dimensional data sets sup-

ported by non linear manifolds. Let us emphasize that

Bayesian MPPCAs enable the number of parameters to

grow only as required by intrinsic data complexity re-

quires. This is typically much lower than the number

of parameters of Gaussian mixture model with high-

dimensional covariance matrices. As a result, MPPCA

models have better resilience to the curse of dimension-

ality.

This paper deals with the aggregation of such models,

providing a central tool to growing needs for perform-

ing pattern recognition on distributed data sources, mo-

tivated by infrastructures such as peer-to-peer, grids or

sensor networks. Our scheme focuses on statistical

learning of global data models through the aggregation

of a set of local, parametric models, and its main fea-

tures are as follows:

• motivated by low computational or network-load

cost, or for protecting confidentiality of individual

data entries, our proposal is designed so that only

model parameters need be accessed to aggregate

mixtures of PPCA. In other words, the scheme op-

erates on the components of the mixtures to aggre-

gate, rather than original data.

• aggregation of a set of MMPCA models consists

in their addition, followed by a ”compression”

phase that seeks an optimal combination of mix-

ture components. A central issue to mixture aggre-

gation is the determination of the number of com-

ponents. We formulate it as Bayesian estimation

and show how EM-like variational inference can

address it. While this generalizes recent work [4]

from GMMs to MPPCA, iterative update equations

have to be largely reconsidered.

Section 2 recalls Probabilistic PCA and its extension

to mixtures of PPCA; we then sketch an associated

variational-Bayes estimation. Section 3 first discloses

how mixtures of PPCA may be extended to handle com-

ponents and presents a novel estimation scheme for this

model. Section 4 provides experimental results.

2. Mixtures of Probabilistic Principal

Components Analysers (MPPCA)

2.1 A probabilistic view to the PCA

Principal Component Analysis is a popular, baseline

technique for dimensionality reduction. Given a d-



dimensional data set, the principal subspace is gener-

ally obtained by diagonalizing the sample covariance,

i.e. by seeking an eigendecomposition of this d×d ma-

trix. Tipping [9] proposed an alternative, probabilistic

framework to PCA, based on the assumption that every

data item y is generated by transforming a zero mean

unit variance q-dimensional variable x (q < d) with ad-

ditive isotropic noise.

y = Λx + µ + ǫ (1)

Let us define the associated probability density func-

tions (pdf ) :
p(y|x) = N (Λx + µ, σ2Id) (2)

p(x) = N (0, Iq) (3)

p(ǫ) = N (0, σ2Id) (4)

Results for linear Gaussian models [3] provide the fol-

lowing marginal distribution for y :

p(y) = N (µ,ΛΛT + τ−1Id) (5)

where τ = σ−2. Λ is a d × q matrix, usually known

as the factor matrix. Later we denote C = ΛΛT +
τ−1Id for concision. ML estimates for Λ were proven

to span the principal subspace of the data sample [9].

This estimate has no closed-form solution, but may be

obtained through an iterative scheme. More precisely,

update formulas can be derived for each parameter by

differentiation, leading to an EM-like algorithm [9].

The ML solution obtained for the PPCA model is up to

an arbitrary rotation matrix. Still, this matrix can be

recovered by diagonalizing ΛT
MLΛML [9], with limited

computational overhead as this matrix is q × q. Post-

multiplying ΛML by this rotation matrix allows us to

obtain the scaled eigenvectors for our subspace, ordered

by decreasing magnitude.

2.2 Handling a mixture of PPCA

The framework presented in paragraph 2.1 is naturally

extended by introducing a latent variable z indicating

the membership of a data item to a PPCA model (called

component hereafter). A set of weights {ωk} is associ-

ated with K components to describe the relative impor-

tance of components. z is a binary one-of-K variable,

meaning that if any item y belongs to the component k,

then zk = 1 and zj = 0,∀j 6= k. Thus, a multimodal

density is fitted on the data set, and each component of

the mixture density determines its principal subspace.

For a data item, the associated pdf is:

p(z) =

K
∏

k

ωk
zk p(y|z) =

K
∏

k

N (y|µk, Ck)zk (6)

p(y) =

K
∑

k

ωkN (y|µk, Ck) (7)

Consequently, a data set y = {y1, . . . , yN} has a likeli-

hood function defined as follows :

p(y) =

N
∏

n

K
∑

k

ωkN (yn|µk, Ck) (8)

An iterative scheme can be obtained by differentiation,

by analogy to the one-component case. ML estimation

was addressed in [9], leaving open the target number

of components K and the number of factors in each

component q. Besides, like most ML approaches, it

suffers from local minima and degeneracies issues ([3],

ch.9,11). Closely related to our proposal, a variational-

Bayes scheme was proposed for the single component

PPCA [2] and the mixture of Factor Analysers [1, 6]

. Factor Analysers and PPCA are very closely related

models, but with sensibly different properties, discussed

in [8]. Briefly stated, the design of variational algo-

rithms enables them to overcome the ML defects indi-

cated above. Using a Bayesian integration of the prob-

lem with proper uninformative priors, a tradeoff be-

tween desired properties (here, having a low number of

components and factors per component) and the data

likelihood is performed. This integrand is intractable,

and an approximate solution is inferred by lower bound-

ing using variational distributions. Update formulas are

obtained from functional calculus. This leads to an al-

gorithm which general form is akin to the commun ML

EM-like algorithm, but which optimizes against distri-

butions instead of parameter values.

Uninformative priors and suitable initialization strate-

gies are employed to perform the automatic choice of

K and q. Beal [1] proposes a birth and death strategy

to address the automatic choice of K. This same prob-

lem was solved using a Dirichlet prior which favors a

minimal number of effective components in [3], ch.11.

q is found using Automatic Relevance Determination

(ARD) [7]. More specifically, each factor has a zero-

mean, normal prior, with a Gamma prior defined over

its precision. If a factor plays no role in explaining data,

the precision of the normal posterior will be driven to 0

by the Gamma posterior. This factor can then be dis-

carded.

3. Aggregating MPPCA models

from their parameters

Let us now consider our input to be an existing MPPCA

model. This mixture might be redundant (i.e. over-

lapping or excessively numerous components, or over-

complex factor matrices), for example if obtained from

the aggregation of different sources of the same under-

lying signal - which is our target application. In this sec-

tion, we show first how such an input can be seen as the



limit representation of a virtual data set. Then, we in-

corporate this representation in the algorithm sketched

in section 2.2 in replacement of an ordinary data set. As

a result, we obtain the low complexity model that best

fits the data which would have been generated from the

input mixture, without resorting to the data itself or any

sampling scheme. Consider a sample originating from

an arbitrary input PPCA mixture having L components.

We denote this sample y = {ŷl}, where ŷl is the subset

of items associated with the PPCA component l. The

conditional likelihood L of this data with respect to an

output mixture (indexed by k) may be expressed as:

L(y|z) =

L
∏

l

K
∏

k

[p(ŷl|ωk, µk, Ck)]
zlk (9)

This formulation is made under the assumption that all

data generated from a component in the input mixture

will be assigned to the same component in the output

mixture. This assumption generally holds as an ag-

gregation task is mostly about regrouping input com-

ponents optimally. Expanding the log of the previous

expression provides :

lnL(y|z) = ln

L
∏

l

K
∏

k

|ŷl|
∏

j

N (ylj |ωk, µk, Ck)
zlk (10)

lnL(y|z) =

L
∑

l

K
∑

k

zlk

|ŷl|
∑

j

lnN (ylj |ωk, µk, Ck)

=

L
∑

l

K
∑

k

zlk lnLlk

We now perform an asymptotical approximation [10]:

lnLlk =

|ŷl|
∑

j

lnN (ylj |ωk, µk, Ck) (11)

≃
Nωl
∑

j

lnN (ylj |ωk, µk, Ck) (12)

≃ Nωl [−KL(N (µl, Cl) ‖ N (µk, Ck) − H(N (µl, Cl)]
(13)

where KL denotes the Kullback-Leibler divergence and

H the entropy. Since these quantities have closed forms

for Gaussians, we obtain :

lnLlk = Nωl[
d

2
ln(2π) +

1

2
det(ΛkΛT

k + τ−1

k Id)

+
1

2
Tr((ΛkΛT

k + τ−1

k Id)
−1

[ΛlΛ
T
l + τ−1

l + (µl − µk)(µl − µk)T )])]

In the remainer of the paper, we discard the influence of

τ−1

l , as the ML value of this term embodies the small-

est eigenvalues of the respective components. Since

ΛlΛ
T
l =

∑

j Λ.j
l Λ.j

l

T
, we may describe lnL as the

combined likelihood of the means and factors of our in-

put components (up to a correct normalization, and with

respective means µk and 0).

Llk ≡ [N (µl|µk, Ck)
∏

j

N (Λ.j
l |0, Ck)]Nωl (14)

Let us underline that our asymptotical approximation

leads to a likelihood term with no dependence on an

input data set, solely relying on the parameters of the

input MPPCA. Furthermore, the functional form of the

Gaussian is preserved, allowing the usual derivation of

a lower bound that founds the variational algorithm [1,

2, 4]. Combining result (14) with (8) :

p(y) =
L

∏

l

K
∑

k



ωkN (µl|µk, Ck)

q
∏

j

N (Λ.j
l |0, Ck)





Nωl

(15)

We may introduce the latent variables x, as the covari-

ance matrices in (15) permit it. In the classical scheme

[1, 8], there is a single variable x per item. Now, each

input component is associated with 1 + q items, so x

scales accordingly :

p(y) =

L
∏

l

K
∑

k

(ωk

∫

dx1lp(x1l)N (µl|Λkx1l + µk, τ−1

k Id)

q
∏

j

∫

dx2ljp(x2lj)N (Λ.j
l |Λkx2lj , τ

−1

k Id))
Nωl (16)

The lower bound formulation proposed in [1] is em-

ployed with (16) as its likelihood term, and this leads

to a tractable set of update formulas. Thorough mathe-

matical and implementation details may be found in [5]

In section 2.2, we mentioned the usage of uninforma-

tive priors. These are still used here, but we may also

jointly exploit some prior knowledge. Indeed we no-

ticed that the standard estimation procedure was able to

recover the scaled eigenvectors ordered by decreasing

magnitude in the columns of ΛML. We also remark that

the additional latent variables are associated with the

columns of the Λ input matrices. Under the assumption

of appropriately ordered input Λ, intuitively we would

associate the first column of the input Λ to the first col-

umn of the output Λ and so on. As x variables denote

the combination of columns of Λ, we therefore choose

to initialize x2.. estimates to canonical vectors, so as

to reflect this belief. Experimentally this principle was

found to improve the results very significantly.
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1)

3) 4)

2)

Figure 1. 1) Hemisphere data seen from
above and 2) seen from one side. 3)

Concatenation of several MPPCAs, form-

ing the input for our algorithm. 4) Re-

sult after aggregation, represented along

with some data points. Gaussian com-

ponents are represented by ellipses, with

their background color indicating the re-

spective weights.

4 Experimental results
We report experimental results on two synthetic data sets

(one clustering-oriented, one with a non-linear mani-

fold):

• a mixture of 3 multivariate Gaussians with ran-

dom covariance matrices. The sample is produced

from 2D Gaussians, and 6 additional dimensions

are generated by various linear combinations of the

2D signal with additive noise.

• a hemisphere. For sampling each point, random

angles and additive noise are chosen (fig. 1)

For each data set, 3000 points are sampled and :

• subsamples of 300 points are randomly selected.

A MPPCA model is fitted to each subsample (fig.

1);

• the first experiment is repeated 100 times. We

monitor the number of clusters, and more impor-

tantly, the dimensionality of the subspace discov-

ered for each cluster. Indeed, our ground truth tells

us we should find 2D manifolds;

• we assess our aggregation technique by choosing

randomly 20 models and using them as an input

(fig. 1). This experiment is repeated 50 times. The

quality of the obtained models will be assessed by

monitoring the cluster subspaces dimensionality,

and the Jensen-Shannon divergence between the

model aggregation and the model obtained using

the whole data set.

Correctly, 2D subspaces are always detected for all our

clusters when fitting MPPCA to the subsamples. After

the aggregations, this property is preserved. 3 clusters

are always detected for the 2D Gaussians subsamples,

and after aggregations these 3 clusters are found again.

15.2 clusters are found on average when fitting MPPCA

to hemisphere subsamples. Aggregations of these mod-

els produce 22.1 clusters on average, thus validating the

parsimony property.

We use JS(model1‖model2) to denote the Jensen-

Shannon divergence between two models. This diver-

gence measure is a symmetrized and normalized vari-

ant of the KL divergence. JS(model1‖model2) ∈
[0, 1], and values below 0.2 generally indicate very

similar distributions. For the 2D Gaussians and

the hemisphere data sets, we respectively have

JS(aggregation‖full data) = 0.15 and 0.20 on average,

indicating strong similarity.
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