IRIM at TRECVID2009: High Level Feature Extraction - Archive ouverte HAL Access content directly
Conference Papers Year : 2010

IRIM at TRECVID2009: High Level Feature Extraction

Feng Wang
Philippe-Henri Gosselin
Lionel Granjon
  • Function : Author
Hervé Jégou
  • Function : Author
  • PersonId : 833473
Georges Quénot
Bertrand Augereau
  • Function : Author
  • PersonId : 915595
SIC

Abstract

The IRIM group is a consortium of French teams working on Multimedia Indexing and Retrieval. This paper describes our participation to the TRECVID 2009 High Level Features detection task. We evaluated a large number of different descriptors (on TRECVID 2008 data) and tried different fusion strategies, in particular hierarchical fusion and genetic fusion. The best IRIM run has a Mean Inferred Average Precision of 0.1220, which is significantly above TRECVID 2009 HLF detection task median performance. We found that fusion of the classification scores from different classifier types improves the performance and that even with a quite low individual performance, audio descriptors can help.
Fichier principal
Vignette du fichier
IRIMatTRECVID2009.pdf (153.71 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-00468199 , version 1 (30-03-2010)

Identifiers

  • HAL Id : hal-00468199 , version 1

Cite

Bertrand Delezoide, Hervé Le Borgne, Pierre-Alain Moëllic, David Gorisse, Frédéric Precioso, et al.. IRIM at TRECVID2009: High Level Feature Extraction. TRECVID 2009 - TREC Video Retrieval Evaluation, Nov 2009, Gaithersburg, MD, United States. ⟨hal-00468199⟩
2196 View
387 Download

Share

Gmail Mastodon Facebook X LinkedIn More