Variations of Hausdorff Dimension in the Exponential Family - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2008

Variations of Hausdorff Dimension in the Exponential Family

Résumé

In this paper we deal with the following family of exponential maps $(f_\lambda:z\mapsto \lambda(e^z-1))_{\lambda\in [1,+\infty)}$. Denoting $d(\lambda)$ the hyperbolic dimension of $f_\lambda$. It is known that the function $\lambda\mapsto d(\lambda)$ is real analytic in $(1,+\infty)$, and that it is continuous in $[1,+\infty)$. In this paper we prove that this map is C$^1$ on $[1,+\infty)$, with $d'(1^+)=0$. Moreover, depending on the value of $d(1)$, we give estimates of the speed of convergence towards $0$.
Fichier principal
Vignette du fichier
huz240309Ref2.pdf (339.3 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00463842 , version 1 (15-03-2010)

Identifiants

Citer

Guillaume Havard, Mariusz Urbanski, Michel Zinsmeister. Variations of Hausdorff Dimension in the Exponential Family. 2008. ⟨hal-00463842⟩
224 Consultations
142 Téléchargements

Altmetric

Partager

More