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VARIATIONS OF HAUSDORFF DIMENSION IN THE
EXPONENTIAL FAMILY

Guillaume Havard’, Mariusz Urbanski* and Michel Zinsmeister®

ABSTRACT. In this paper we deal with the following family of exponen-
tial maps (fx : z = A(e® — 1))ae[1,400). Denoting d(A) the hyperbolic
dimension of fy. It is proved in [Ur,Zd'] that the function A — d(}\) is
real analytic in (1, +00), and in [Ur,Zd?] that it is continuous in [1, +-00).
In this paper we prove that this map is C' on [1, +0c0), with d’(17) = 0.

Moreover we prove that depending on the value of d(1)
d(14e) ~ =272 ifd1) < 2,
|d'(1+¢e) < —cloge ifd(l)=3,
ld(1+e) < e if d(1) > 2.

In particular, if d(1) < 2, then there exists Ao > 1 such that d()) < d(1)
for any A € (1, Xo).

Hausdorff dimension, Julia set, Exponential family, Parabolic points, Ther-
modynamic Formalism, Conformal Measures
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1. INTRODUCTION

1.1. An overview of the problem. In this paper we deal with maps of
the form fy : z +— A(e*—1), for A > 1. Aslong as A is strictly greater than 1,
0 is a repelling fixed point and there exists an attracting fixed point ¢y < 0.
Those two points collapse to 0 for A = 1, and 0 becomes parabolic. We are
interested in Jy, the set of points that do not escape to oo under iterations of
fr. The Hausdorff dimension of this set, that we denote d(\), is an element
of (1,2), and is called the Hyperbolic Dimension of the map f\. While for
any A the Julia set of f) has Hausdorff dimension constant equal to 2, cf.
[McMu'], the Hyperbolic Dimension varies with A. Moreover, any invariant
probability measure gives full mass to Jy, and d(\) is, in the hyperbolic
case, equal to the first zero of the pressure of the map t — —tlog| f§\|1, cf.
[Ma,Ur!].

Variations of A — d(\) with respect to A, is an interesting feature that
reflects changes in geometry after perturbation of a dynamical system. The
philosophy is that d behaves smoothly, and even real analytically, if we
perturb a conformal hyperbolic dynamical system, in a real analytic way.

This philosophy was proposed in 1981 Rio de Janeiro’s conference by Sul-
livan [Su]. The same year Ruelle [Ru] proved that it was true for a class of
Hyperbolic Conformal Repellers. His strategy, used since then in other con-
texts, see [Ur,Zd!] for the exponential family and [Ma,Ur?] for meromoprhic
functions, was the following : prove a Bowen’s formula that identifies the
dimension as the zero of a pressure function, prove that this pressure is the
logarithm of a simple and isolated eigenvalue of a Perron-Frobenius(-Ruelle)
operator, then use some results about perturbation theory of operators.

When approaching the boundary of an Hyperbolic components one can
not expect any smoothness. Nevertheless there still exists some paths along
thus we still have continuity of the Hausdorff dimension. This was first
proved by Bodart and Zinsmeister in [Bo,Zi| for the quadratic family, z —

IThis result is known as Bowen’s formula.
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2% + ¢, for ¢ € R approaching i from the left. Then it has been proved for
other parameters ¢, [Ri], or other rational maps, [McMu?], [Bu,Le], or in
other situations see [McMu?] for Kleinian Groups, [Ur,Zd?] for the exponen-
tial family. The strategy for such results is to control conformal measures, or
Patterson-Sullivan measures, in order to prove that they converge towards
the ”good” conformal/Patterson-Sullivan-measure. This usually boils down
in proving that any limiting measure is non-atomic. Note that this strat-
egy may also be used to proved discontinuity of the Hausdorff dimension,
or more precisely to prove convergence towards something bigger than the
Hausdorff dimension of the "limit set”, [Do,Se,Zi], [Ur,Zi!] and [Ur,Zi?].

The problem of the derivative of the Hausdorff dimension is, to our knowl-
edge, investigated in two other papers than the present one. In [Ha,Zi!]
for the quadratic family it is proved that d’(c), the derivative of d(c) :=
Hdim(.J.), diverges towards 400 as ¢ converges towards % from the left. In
[Jal], still for the quadratic family, but this time for ¢ converging from the
right towards —3, and under the realistic hypothesis that d(—%) < %, it is
proved that d’(c) converges towards —oo. In order to control the derivative
the starting point in all those papers is first to get an exact formula for
the derivative. This is done using thermodynamic formalism by differenti-
ating the Bowen’s formula. Then some uniform estimates of distorsion in
a neighborhood of the fixed point are used in order to control measures of
fondamental annuli. Conclusions then comes from a precise analysis of a
certain integral. This is that last point that explains why such a study has
not been yet done in a more general setting. In the present paper, as well
as in [Ha,Zi'] and [Ja!], some very particular properties of the case studied
are used to conclude.

1.2. Main result. When one notes that if 7) denotes the translation by — A,
then we have fy o7y = Ty 0 gx, with g\(2) = a(\)e* and a(\) = Ae™?, this
philosophy (real analyticity of d) is in [Ur,Zd!] proved to be the case. More
precisely, it is proved there that d : A — d(A) is real-analytic on (1,400),
and in [Ur,Zd?], that it is continuous on [1, +0c). In this paper we study the
asymptotic behavior of the function A — d’'(\), and we prove the following.

Theorem 1.1. There exist \g > 1 and K > 1 such that YA € (1, \g)

ZA=1HD=2 < @) < —KO\-1)XD-2 4f4(1) < 3,
O < KO —-Dlog sl ifd(1) =4,
d'(\)] < K(\A-1) ifd(1) > 3.

In particular the function X+ d(\) is C* on [1,+00), with d'(1) = 0.

Remark : As already mentioned, conjugating f) by the translation
Tx, we get the family gy := 7, 0 fy o T)\_l, with gy(z) = Ae™?e?. Changing
variable to € := Xe* ! — 1, we get the family g. : 2z — (1 + e)e'e? with
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e ~ (A —1). Let D(g) be the hyperbolic dimension of g., then

D'(e) ~ &2PO=3 if D(0) < %,
ID'(e)] < logi  if D(0) = 7
|ID'(e)] < K if D(0) > 5.

Note in particular that, in case D(0) < %, we get exactly the same asymp-
totic as the one in [Ha,Zi'] for the family ¢ — 22 + ¢, with ¢ < i. For this
last family we were able to prove that d(i) < %, see [Ha,Se,Zi]. Inequality
that we do not know for the exponential family.

Note also that if d(1) < % then we have a control on the sign of the
derivative in a right neighborhood of 1. It asserts that d(17) is a local
maximum of the Hyperbolic Dimension.

Remark : There is to our knowledge no algorithm to compute accurately
Hausdorff dimension of parabolic Julia sets. In [Ha,Se,Zi] an estimate of the
Hausdorff dimension of the caulifiower (the Julia set of z + 22 + i) is given
using by calculating, with a computer, the first terms of a sum, then by
estimating its tail. This method uses strongly particular properties of the
map. More generally, one could build an infinite iterated function system
whose limit set would have Hausdorff dimension equal to the hyperbolic
dimension of the Julia set. Then, using results from [He,Ur], one could
approximate this Hausdorff dimension by finite subsystems keeping track of
the error. Finally, there are algorithms to calculate Hausdorff dimension of
finite IFSs with any desired accuracy [McMu?], [Je,Po]. However, to realize
such program would be a tedious extremely time consuming task.

The proof of the main result will follow exactly the same lines as the
one of [Ha,Se,Zi], but will make an extensive use of the Thermodynamic
Formalism for Meromorphic Functions, as developed by, Urbanski, Urbanski
and Kotus, Urbanski and Zdunik, and Urbanski and Mayer. The reader will
find in [Ma,Ur?] all proofs of results we need in this paper, as well as a
complete bibliography on the subject.

1.3. Organization of the paper. In the first part we use Chapter 8 of
[Ma,Ur?] to get a formula for d’(\), for any A € (1,+00). This mainly
consists of conjugating the dynamics and differentiating the pressure.

In the second part we collect some estimates of the distortion around the
fixed point 0. They are crucial since the formula obtained in the first part of
this paper involves two integrals with respect to an invariant measure that
has unbounded Radon-Nikodym derivative with respect to the Hausdorff
measure, in any neighborhood of 0.

In the third part we use those estimates to control the integrals and to
prove the main result.

In the first appendix we prove the estimates used in the second part of
this paper in a more general setting than needed in this paper. Namely, we
allow the repelling fixed point to converge towards a parabolic fixed point
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with several petals. The second appendix is devoted to the study of partial
sums of some sequences that will be needed several times in the paper.

Thanks : The authors thank the european Marie Curie network CODY
which help them to meet several times. They also thank the referee for his
suggestions and his careful reading of the paper.

2. A FORMULA FOR THE DERIVATIVE OF THE FUNCTION \ — d(\)

Before giving and proving the formula of the derivative, this is done below
in Proposition 2.1, we introduce some notations and recall some results
concerning the thermodynamical formalism for that family of exponential
maps.

2.1. Thermodynamic formalism. Let P be be the cylinder {z € C| —
Im z < ©}. As it is done in [Ur,Zd!] we associate to f) the map Fy : P — P
defined by
Fyom=mofy,

with 7 being the natural projection on the cylinder P = C/ ~, with z; ~ 2y
if and only if (21 — 22) = 2ikm, for some k € Z. In particular for any
z € P we have f)\(z) = F)(z), and F)\(z) = F)\(2') if and only if there exists
k € Z such that f\(2) — fa(2') = 2ikw. This tells us that for any 2z € P,
we have Fy !(z) = {z1, € P| falzr) = 2 + 2ikm, k € Z}. We also see that
J(Fy) = n(J(fr) = J(fr) NP,

Let us now introduce some notation and collect some results, where we
mainly refer to [Ma,Ur?], see also [Ur,Zd'], [Ur,Zd?], [Ur].

- For any A > 1 we define £, the Perron-Frobenius operator associated
with the potential —tlog |F}|. It acts on M., the set of bounded a-Hélder
functions defined on J(F)), in the following way, let g € H2, and z € J(F))

Lul) = % mg@)

Fx(y)=2

- Z “ e+ A+ 2zk7rltg(zk) with 2y € P such that fj(z) = z + 2ik-

- The only d(\)-conformal measure supported on Jy is denoted m2.

- The only equilibrium measure for the potential —d(\)log|F}| and the
dynamical system (Jy, F) is denoted py.

-The pressure of the potential —tlog |F}| is denoted P(\,t), and is defined
by
P(A\t) = sup{h, —txu},

2We refer to section 3 of this paper for a definition and more details about conformal
measures.



6 VARIATIONS OF HAUSDORFF DIMENSION IN THE EXPONENTIAL FAMILY

where the supremum is taken over all invariant probability measures p sup-
ported on J(F)y), such that x, < 400, where h, denotes the metric entropy
of the measure i, and x, = [log|F}|du is its Lyapunov exponent.

We will derive our formula for d’()\) starting from Bowen’s formula that
asserts that for any A > 1, d(\) is the only real number so that P(\,d(\)) =0
(see [Ur,Zd']). We want to differentiate this formula with respect to \, and
in order to do so we need to appropriately conjugate the dynamics of Fy.

- Let Ay > 1 be fixed. For any A > 1, we denote h) the conjugating map
from Jy, to Jy such that F o hy = hy o F),.

- We then set : ¢y, := —tlog|F} o hy|. It is a potential which is defined
on Jy,. We then use Corollary 8.10 in [Ma,Ur?] that tells us that (\,t)
Py(pyy) is real analytic for A close enough to Ao®. Bowen’s formula then
implies that %Po(cp Ad(x)) = 0. It is this calculation that leads to the desired
formula.

2.2. The formula and its proof. In this section we prove the following
formula

Proposition 2.1. For any A € (1,+00) we have

(2.1) d’(A):—i?( >/JAZR6 (F} )dm,

k=1

where iy is the only equilibrium measure for the potential —d(\)log |FY|.

Let A\g > 1 be fixed and let h) denote the conjugating map : I o hy =
hyoF),. Since puy is the equilibrium measure for the potential —d(\) log |F}|,
we deduce that the potential ) 4(1) has a unique equilibrium measure which
is 10y := ha.(i)). We shall now use Theorem 6.14 in [Ma,Ur?] which asserts
that given a tame function ¢ and a weakly tame function ¢ we have

0
(22 syl + ) o = [ v

with g, the equilibrium measure for the potential ¢. We refer to chapter 4
of [Ma,Ur?] for definition of tame and loosely tame functions. By Lemma
8.9 in [Ma,Ur?], we know that for R > 0 small enough, there exists 3 > 0
such that VA € (A\g — R, Ao + R) ¢y is B-tame. We then deduce from (2.2)
that

B 0 -
(2.3) 0= ﬁPO((P)\,d(A)) = /JA B (SOA d(x )) dfix-

We thus have to compute %c@\’d()\). Note that
Ora) = —d(N)log |Fy o hy| = —d(A)(log A + Re hy).

3We denote here Py the pressure with respect to the dynamical system (Jx,, Fi,)-
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Differentiating with respect to A we get

0 1 0
24 Jreran = ~¢ W) log|Ff o a] — d) (5 + Re i )

Lemma 2.2. For any A € (1,400) and any z € Jy, we have

) 1) < 1 1

In order to prove this formula we use two results from [Ur], Lemma 13.2
and Proposition 13.4, that we give in the following Lemma

Lemma 2.3. For any )y € (1,+00) one can find R >0, K >0, and o > 0
such that

(2.6) YA€ B(\,R) VneN VzelJ (F2Y(2)] > K(1+ a)™

(2.7) VA€ B(\g,R) VzeJy ‘%h,\(z)‘ <K-

We can now prove Lemma 2.2.

Proof. Tn order to simplify notation, we write hy instead of %h)\, and we
drop z. We start with the conjugating formula : hy o F), = F\ o hy =
A(e" — 1), that we differentiate with respect to A. We thus get,
HAOF)\O = FAOhA+HAF)/\OhA.
So that we have . _
e - hyoFy,  Fxohy
AT Flohy  Flohy

Iterating this formula we end up for n € N with

: haoFl i FyoFl'on
) = e i~ 2o e

~ (F{Y o hy (FF) o hy

k=1
Using Lemma 2.3 we deduce that
A (F§,(2)
(FX) (ha(2))
On the other hand, since Fj(z) =e* — 1 = $F{(z) — 1, for any k we have

is converging towards 0-

F)\OF){C_1 1
() AETy (EY

This leads to
St
(FFy A (Fp) A (FFy
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Using (2.6) in Lemma 2.3 we get that the series on the left above is converg-
ing towards

*i’f 1
i ()
which finishes the proof. (]
Using (2.4) and Lemma 2.2 in (2.3) we get
(2.8)
—d’(A)/ log | F¥|dfiy — d(\) (1 - l) / Re > L
Txo A S k>1 (FY) 0 hy

For any function g continuous on Jy we have fiy(gohy) = ux(g). We deduce
from (2.8) that Proposition 2.1 is true.

3. LOCAL DYNAMIC AND UNIFORM ESTIMATES

In this section we introduce some notations and collect estimates proved in
the appendix in a more general setting®. We then use these estimates in order
to control uniformly conformal measures (m)) and equilibrium measures

(r)-
3.1. Notation. We know that J\NP C{z€ C| =5 <Im z < T}.
Given 0 < 6 < 5 we denote Sy the sector {re®|[r >0, =0 < a <0 }.

For rp << 1 we fix 0 < § < § to be such that J; N B(0,7) C Sp. Then we
choose g > 0 small enough so that for any 0 < A =14+ < A\ =1+ g
we have f,'(Sp) C Sp and Jy N B(0,7) C Sy. We then set 79 = {roe’ | t €
]—6,00}, 1(\) = f5(70). Joining roe with f; ' (roe’) by a line, and doing
the same with roe "’ and its image by f N L we get a cell Co(N). Tt is a simply
connected domain. A compactness argument tells us that if 1 < A < Ag,
then there exists a simply connected domain V' C Sy such that the closure of
UxCo(A) is a subset of V. In particular, Keebe distorsion Theorem gives us
a constant K > 1, only depending on 7y and g, such that for any univalent
function h on V' and any point z and y in UyCp(A) we have % < % <K.
We will use later on this fact with inverse branches of f}'. They are well
defined on V since the post-singular set of the f\’s, i.e. the orbit —\ under
fx, is a subset of (—o0,0).

We then define for each integer n the set Cp, () := f,"(Co(N)), with fi ™"
being the n'! iterates of the inverse branch of fy defined on B(0, () that fixes
0. In the following we are working with respect to measures concentrated
on Jy of dimension strictly greater to 1. One checks easily in that context
that with respect to such measure (Cy,()))nenugoy is a partition of B(0, 7).

Moreover the set Cp()) is mapped univalently by fi™ to Cyn(M).

4We deal in the appendix with a family of germ of holomorphic in a neighborhood of
a repelling fixed point which degenerates into a parabolic fixed point with p petals.
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Let N. be an integer® and defined the sequence (Gne)neN s ape = %, if
n < Ng, and ap. = ¢(1 +¢)7", if n > N.. Note that a,. — 0. In
order to simplify notations, we let a, := a,.. We consider now the one
parameter familly of sequences, (a,(a))nen, defined for n € N by a,(«) :=
a®. We are also interested in partial sums of > a,(a). For k < n we let
Skn() = > pa(«). The sequence (an(a)) will describe, for different
values of «, the distorsion around 0, the conformal measure of partition
sets of a neighborhood of 0, and the partial sums Sy, ,,(«) will play a role
in controlling the invariant measure of the same partition sets, as well as
evaluating the integral which is crucial in order to get our main result. Those
estimates are easy and we use them in this section but we postponed their
proofs to the appendix.

3.2. Uniform estimates of the distorsion. In this section we give uni-
form estimates depending on A for the local dynamics next to the repelling-
parabolic fixed point 0. We recall that the family we are studying is given
for A\:=1+¢ > 1 by fi(z) = A(e* — 1). In particular, in a neighborhood of
0, the local dynamic is given by the following Taylor expansion

F(2) = fa(z) = Az + 22 + 2395 (2):
With gy (z) uniformly bounded, independently of A, as soon as a neighbor-

hood of zero has been fixed. Note in particular that for € = 0 , the point 0
is a parabolic fixed point with one petal.

We apply the general results of the first appendix of this paper to this special
family fy. In the remaining of the paper we set A = 1+ ¢ and we denote the
relevant quantities by indexing them equally well either by € or A\. Moreover,
in the remainder of this section £ ™ will be the inverse branch of F} ™ that
fixes 0. From Proposition 5.7 we deduce that

Proposition 3.1. Let 0 < rg, 1 < Ay being fized. Then there exists K > 1
such that VA € (1, \g), Vz € Cy(N), and Vn € N

an(2) < (™) (2)] < Kan(2)

The following result is technical but will be crucial in order to control the
sign of the derivative d’(\).

Lemma 3.2. Let 0 < rg, 1 < \g being fized. There exists an integer N such
that Vn > N, Vk €e NN [1,n — N|, VA € (1, \g) and Vz € Cy,()\)
V3
2
Proof. Let z € C, and 0x(z) = arg(F{)'(z). The Lemma boils down to
proving that |05 (z)] < .

One computes that (Ff)(z) = H;:é F)’\(Fi(z)) = \F eXp(Zf;Ol F/{(z)) So

(FY)'(2)] < Re (FY)'(2):

5In our study we have N, ~ % = ﬁ
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that we have 0(z) = z;.:(} Im (Fi(z)) Since Fj(z) belongs to Cy—j we

may use Corollary 5.8 which asserts that |Zm (Z)| < = ]) for any Z €
Cp—j. We thus have
n—k 1 400 1
10x(2) S Z 35 = Z —-
il ) e
This is less than § if N is big enough and we are done. "

We end this section with two more estimates of the distorsion. The first
one needs the following observation on the localization of J(fy).

Lemma 3.3. For every R > 0 there exists A > 0 such that for all A > 1,

J(fx)\ U (2mni, R) C {z € C: Re z > A}.

Proof. First notice that
Hh{zeC:Rez<0}) =B(-\\) C{zeC:Rez<1-A} C{zeC:Rez<0}.
Thus
(3.1) {z € C:Re z <0} C F(fr) := Fatou set of f).
Now write z = x + ¢y. Then
Re (fa(z)) = Re (A(e®cosy +ie“siny — 1)) = A(e” cosy — 1).

Note that there exists A; > 0 so small that if 0 < z < Ay and = + iy ¢

+oo  B(2mni, R), then dist(y, {27ni : n € Z}) > R/2, and consequently,
cosy < cos(R/2). Hence, Re (fr(2)) < Ae® cos(R/2) — 1). Take now
0 < A < Aj so small that e® cos(R/2) < 1. So Re (fi(2)) < 0 and, by
(3.1), fa(z) € F(fr). Therefore we have proved that

+o0o
{zeC\ U B(2mni,R) : Re z < A} C F(fr)-
n=-—oo

We are done. "
Now notice that if Re z > A, then

1fA(2)] = AeRe 2 > N > 1.
Combining this and Lemma 3.3, we obtain the following.
Lemma 3.4. For every R > 0 there exists v > 1 such that for every z €
J(F)\ BO,R) |

[FA(2)] = -
Using Proposition 5.7, Lemma 3.4 and the same reasoning as for the proof

of Lemma 3.6 in [Ha,Zi'] we prove the following result

Lemma 3.5. There exist 0 < ro, 1 < A9 and 1 < K such that VA € (1, \g)
and ¥z € Jy,
F(2) ¢ B(0,70) = Kn® < |[(FY)'(2)]-
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3.3. Conformal measures. Let us recall that a probability measure m) is
called conformal if its strong Jacobian is equal to |F )’\]d()‘). This means that
for any measurable set A on which f) is 1-1 we have

(3.2) ma(Fy(A)) = /A |90 iy

Those measures are usually a powerful tool to study Hausdorff dimension of
Julia sets. In fact their definition is dynamical but they very often carry a
geometrically significant information about the Julia set. In many of cases
they coincide (up to a multiplicative constant) with Hausdorff or packing
measures on the Julia set.

Using Proposition 5.7 and the notation introduced below we get the fol-
lowing.

Proposition 3.6. Let 0 < rg, 1 < Ag being fized. Then there exists K > 1
such that VA € (1, \g), and VYn € N

e (2d(N) < ma(Ca(N) < Kan(2d()

Proof. This is not difficult when one observes that for each A the function
F{" is univalent on C,, (). In particular using the definition of a conformal
measure we deduce that :

(3:3) m(Co(A)) = ma(FX (Cn(X))) :/c (A)\(Ff)’\d(”dm»

We then use estimates of Proposition 3.1, since |(F}')'| on Cp(A) is com-
parable with [(F}™)'|7! on Cy(A). We deduce that there exists a constant
K > 0 such that for any z € Cp(\)

1
KI(FA")'(Z)!_d(A) < mA(Ca(N) < K|(FS) (2)| 7

We can now conclude the proof by using again Proposition 5.7. "

(3.4)

Remark : Let mg, be any accumulation point of the family of probability
measures (my)a>1. Let (A,) be a sequence of real numbers converging from
above towards 1 such that the sequence (m),, ) converges weakly to ms,, and
(d(A,)) converges to some d > 0. For any r > 0 small enough one may find
N(r) such that

Vn=N@)  B(0,r)N Jx, € {0} UUsen( Crlrn)

And in particular we conclude if r > 0 is such that me({|z| = r}) = 0, that
we have
Moo(B(0,7)) = lim my, (B(0,r) < lim " my, (Cr(An)) <

n—00
k>N (r)

K
N (r)2d0n)-1"

So that we conclude that m., has no atom at 0. And it is one of the main
point in order to conclude that d(\) — d(1) when A\ — 1, see [Ur,Zd?].
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We end this section about conformal measures with a technical Lemma.
It will be used in the next section concerning invariant measures.

Before stating and proving this result we recall that P = {z € C| —
pi < Im z < pi}, and for any M > 0, and any r > 0, we introduce the
following notation : Py := {z € P|Re z < M}, B, := P\ B(0,r) and
Br,M = Py N B,

Lemma 3.7. There exists 0 < aw < 8 such that YM > 2, VX € [1, \g], with

Ao < %, Vr €]0, 5 — Xo] and VA C B(0,r) measurable, we have
(35) am)\(A) < m)\(F (A) N B, ) < 5m)\(A)
and

(3.6) mA(FyH(A) N Byar) < ma(Fy H(A) N B, < 548my(FyH(A) N By ).

Proof. Let By, be the connected component of Fiy '(B(0,7)) such that fy(By) =
B(2ikm,r). For any z € By, we have :

(3.7) |EX(2)] = If3(2)] = [ £a(2) + Al = |A + 2ikm + ae”],
with a < r and 0 < 0 < 27w. With our assumptions this leads, for |k| > 1, to

m m
(33) 2kl - 5 < |FA ()| = I£4(2)] < 2kl + 5

Since | f{(2)| = Aexp(Re z), we also get, for any |k| > 1, that
Vz € B, logh < TRe z
As a consequence we see that F)\_l(B(O,T)) N B, = Ujg>1 Bk
The measure m) being conformal we have

ma(A) = ma(Fx(Ay)) = /A F{ "N dm,
k

with Ay = F/\_l(A) N By. From (3.8) we deduce that

my(A) ma(4)

(3.9) W < my(4g) < Wa

so that

(3.10)

2m (A) Z - < mA(F)\_l(A)ﬂBT) <2my(A) Z !

(2km + )4 — £ (2km — )00

k>1

The function A — d(\) being continuous on [1, \g] one may consider its
minimum 9 Which is strictly greater than 1. With a =25, m and
- 3

=21 @S my; We have :
amy(A) < my(FyH(A) N B,) < Bmy(A).
This is (3.5).
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Note that (3.8) tells us that for any z € By we have Re z <log(2r+ %) <
2 < M. This implies that By C B, ». In particular we have

m)\(Al) < m)\(F)\_l(A) M BT’,M)'
We then deduce from (3.9) that

m(A)
(2r + §)?
Together with (3.5) we conclude that

< my(FyH(A) N B )

ma(FY(A) N B,) < (27 + g)zﬂmA(FA_l(A) N Brar)-

Since (27 + £)? < 54 we conclude that the left hand side inequality of (3.6)
holds. The right hand side being obvious the proof is finished. "

3.4. Invariant measures. Let us first recall that uy = pym, is the unique
F)-invariant probability measure equivalent with m). This measure is also
the unique equilibrium state for the potential —d(\) log |F}| i.e.

Py = () [ tog | F5]dir = sup{i — ) [ 1og | ldu,

where supremum is taken over all F)\-invariant ergodic probability measures
such that [log|F{|du < +o0c. The function py is obtained in [Ma,Ur?] as
the limit of the sequence £} (1). The main results of this section is

Proposition 3.8. Let 0 < rg, 1 < Ay being fized. Then there exists K > 1
such that VA € (1, ), and Vn € N

- an(2d0) = 1) < ma(Cu(V) < Kan(2d(N) =1) if n < Ne.

ii- Lan@IO) < (0, () < K eEA) if n > N..
Proof. Let B, := P\ B(0,r). We know that py(B,) > 0 so that the first
return time N ,(z) := inf{n > 1|F(2) € B,} is finite py-almost-surely.
Let By, = {Nr, = n}. We recall that the sets (C,) are introduced at
the beginning of this section. Note that for » small enough we have B) ,, N
B(0,r) = C,—1(X). Since py is F)-invariant its restriction to B, is invariant
for the first return map in B,, that we denote T. Moreover, u) can be built
from this Ty-invariant measure and this leads, for any measurable set A, to

the formula
Z Z px(F ) N By N B).

n>1k=0
We are interested in the sets C) for which we get

ZZM *(C1) N Bxn N By).

n>1 k=0
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Note now that the set F)\_k(Cl) N Bypn N B, is empty unless n > [ + 1 and

k =n—1—1. In this case we have F)\_("_l)(Cl)ﬂBA,nﬂBr = F)\_l(Cn_g)ﬂBr.
We thus conclude that
=> ua(F, )N By):

n>l

In Corollary 3.10, that we admit for the moment, we show that there exists
K, > 0, independent of A, such that for any A C B(0,r) we have

%WMKM@TWOWé&mM%

So,
KlzmA ) < () <Klzm>\

n>l n>l
From Proposition 3.6 we deduce that there exists Ky > 0 such that

5 Z > an(2d(N) < ua(Cr) < K'Y an(2d(N).

n>l n>l n>l

With the notations used in the appendix this is exactly
1
ESI,+00(2d()‘)) < (Ch) < K281 400(2d(N))-

We then use Corollary 5.10 to finish the proof. "

Lemma 3.9. There exists K > 0 such that for all A\ = 1+ ¢, with e > 0
small enough, all r > 0 small enough, and all M > 0 big enough we have,

1
?gp,\gK on By, and py <K onB,-

From this Lemma and Lemma 3.7 we easily conclude this.

Corollary 3.10. There exists K > 0 such that for all A = 1 + ¢, with
e > 0 small enough, all r > 0 small enough, and for any measurable set
A C B(0,r) we have
1 _
74 < By HA)NB;) < Kmy(A):
Proof. Let > 0 and € > 0 be small enough so that the assertions of
Lemmas 3.7 and 3.9 hold. Let K > 0 coming from Lemma 3.9 be larger
than max{3,a '}, both a and 8 coming from Lemma 3.7. By Lemma 3.7
we know that for any A C B(0,7) we have
1 _
A (Fy L(A) N B,) < my(A) < Kmy(Fy ' (A) N B,)-
From the right hand side inequality in Lemma 3.9 we know that

pn(FH(A) N By) < Kmy(FyHA) N B,)-
These two inequalities give us
in(FTH(A) N B,) < K2ma(A)-
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For the other inequality we first note that Lemma 3.7 also asserts that

1 _ _ _
EM)\(F)\ 1(A) N B,«,M) < m)\(F)\ 1(A) NB,) < Km)\(F)\ 1(A) N Br,M)‘

Since Lemma 3.9 implies that

1
EWL)\(F)\_I(A) N By ) < ,u>\(F>\_1(A) N By ) < KTrL)\(F)\_l(A) N Brm),

we conclude that
ma(A) < Kma(Fy ' (A)NB,) < K*my(Fy ' (A)NBrar) < K2 (Fy H(A)NBy u)-
We easily deduce that

ma(A) < K2 pa(Fy 1 (4) N B;)-

This is the left hand side inequality of the Corollary and its proof is finished.
[

Proof. Before starting the proof of Lemma 3.9 we sketch the strategy. We
first use a result of Urbanski and Zdunik, Lemma 3.4 in [Ur,Zd!], that asserts
that as long as we stay far away from the post-singular set, iterates of Ly
are uniformly bounded from above by a constant that does not depend on
A. This gives us that py is bounded from above in some B,. And this allows
us to prove that for r and ¢ small enough, and for M big enough we have

% < px(Bram) < 1.

In order to control py on B, 3r we use Kcebe’s distortion Theorem on B, 5
and prove that the measures m, have the bounded distortion property on
B, v, with a constant which only depends on r and M. This implies, see [Ma]
(compare [Ha] Propositions 1.2.7 and 1.2.8), that there exists an F)-invariant
measure v, which gives mass 1 to B, ys and which is equivalent with m. Its
Radon-Nikodym derivative is such that % < j;% < K on B, y, with some
K > 0 independent of A. Since m) is ergodic and conservative, there is, up
to a multiplicative constant, only one possible invariant measure equivalent
to it. This means that py = a)vy. Integrating on B, ps we conclude that
ay = px(Byar). This leads to % <pr<K.

We now go into further details. Note that the singular set of F) is the
one point —A which sequence of iterates converges towards 0 from the left.
In particular B, s is a simply connected domain on which inverse branches
of Fy are well defined. Since J) is a subset of {—5 < Zm z < 5} one may

find an open simply connected domain U, ps such that : U,y C 8572 M and
JxN By C Up . We have thus an annulus 8572 wm \ Urv and an associate
Koebe constant /K pr. We conclude that for any A and any n € N we have

L _ 80

3.11 Vo € U, Vy € U, < < Ko v
(311 e S T S
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Since for a measurable set A we have my(Fy"(A)) = [, LY(1)dmy, we
conclude, if A C U, s, that

Lo oma(4) _ ma(Fy"(4) my(4)
Kot ma(Upar) ~ ma(Fy " Uran)) — M ma(Unnr)

This is precisely the bounded distortion property for my on U, s as it is
used in [Hal. Since (Jy, F,m)) is ergodic and conservative there is, up to a
multiplicative constant, only one invariant measure equivalent with my. Let
vy be the one that gives mass 1 to B, . It follows from Propositions 1.2.7
and 1.2.8 in [Ha] that

my-almost surely on B,

The measures ) and vy only differ by a multiplicative constant which can
be computed by integrating the function 1 over B, ;. We deduce that
ey = px(Byar)vy and we conclude that

px(Brar)

(3.12)  my-almost surely on B, as
KT,M

< pa < Ky prpix(Browr)-

Using inequalities (3.11) one may now adapt the reasoning of Lemma 3.4
in [Ur,Zd!] to our situation. Let M be large enough and r small enough so
that : % > r and for all A € [1, o] if Re z > M then £5(1)(z) < 1.
The purpose of the first requirement is the following

(3.13) Vze P (Rez>M and Fy\(y)=z2)=|y|>r (ie. y€B,):

We prove by induction that H,, is true for all n with

KT’M
Hy & 1L x5, oo < —mM .
H )\( )XB H m)\(Br,M)

Notice that Hj is obvious and assume that H,, is true. Since

LOE Y

k>Re z

and since d(\) is converging towards d(\g), one deduces that £)(1)(z) is,
uniformly in A, converging towards 0 as Re z — oo. We deduce that
[|1Lx(1)xB,||oo is achieved for some z; € B,. An easy induction leads, for
all integers n > 0, to the existence of some z, € B, such that

1LX(D)x B, |lo = LX(1)(20)-
Consider 2,41 and assume that it lies in B, ps. Then we have

£§+1(1)(2n+1)
K

1= /E;\‘H(l)dm)\ > /ﬁf\‘Jrl(l)XBT’Mdm)\ >
r,M

mx(Brr)-
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The last inequality is an application of (3.11) and we conclude that H,, 1 is
true. But z,.1 might be with a real part greater than M. In this case we
have

L3 (1) (1) = LALR (1) (zng1) < LX) (20) LA(1) (2041) < L3 (20):

Those inequalities are implied by our assumptions on M and r that ensure us
first, that any pre-image of z,1 is in B,, and second, that £)(1)(zp4+1) < 1.
We may now apply our inductive assumption to conclude that H, 41 is true
so that this hypothesis is true for any integer n. Let o, a7, be defined as
the infimum of the set (my(B; ) where A € [1, Xg]. Since A — my (B, )
is continuous on [1, Ag], this infimum is achieved and is strictly greater than
0. Fix r small and choose M (r) such that all assumptions are fulfilled and
KT' M(r

067«,1\’1(7-5,;0
pr < Cp )y, on B.. We have thus proved the left hand side inequality of
Lemma 3.9. In order to finish the proof of this Lemma we need to prove
that % < p) < K on B,y By (3.12) this will be done if one can prove that
(A (Byar) > 3 for suitable r and M.

Since we know that py < C, 5, on B,, we may already use the left-hand
side inequalities of Proposition 3.8. In particular for any n we have

Gy
pa(Chp) < 3 6i°1 with 1 < § = inf{d(\)}, well defined by continuity.

set Cpy, = . We deduce from our analysis that lim, . £Y(1) =

Let now N be big enough so that

3 1 o1
= n25—1 — 407’,)\0

Chose ' small enough so that for any A € [1, \g] we have
B(0,7") C Up>nCr(N)-

Such a choice is possible because of Proposition 5.7. We then easily conclude
that uy(B(0,77)) < i. As a consequence, one may assume, without loss of
generality, that we have started our analysis with » > 0 small enough so
that px(B(0,r)) < 1.

By Lemma 4.1 in [Ur,Zd?], we know that the sequence of measures (m.)
is tight. In particular, if M is chosen large enough, then for any A € [1, A]
we have my(Pf;) < ;Ao From where we deduce that i) (P§;) < 1.

4C,.
Note now that zix(Brar) = 1 — pua(B(0,7)) — pa(P§;) > 3. As already
mentioned this inequality finishes the proof of the Lemma. "

4. CONTROLLING THE INTEGRALS

In this section we mainly reproduce the reasoning of [Ha,Zi']. Never-
theless there are some differences we would like to emphasize : the main
being that we do not know whether the dimension of J(F}) is less than %

or not. Note also that the Markov partition used in [Ha,Zi'] is replaced in
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the present article by the backward images of the fundamental domain Cj.
Finally, note that we work directly on Jy without conjugating the dynamics.

Before we start the proofs and in order to simplify some expressions and
calculations, we introduce the following notation. Let

"1

\I/n - ;
2y
-~ 1

(pn - 3
;::1 [(FFY|
1

U= ,
Z G

and

so that formula (2.1) may be written
d(A 1
d(\) = _dX <1 - —> Re (V) dpy-
Xpex A I
We will need the following equation which is an easy computation

1 1
41 Ve — UoF'4+W, &=—OoFl+d,
(4.1 Fpy ot [y e

4.1. Lyapunov exponents. In this paragraph we prove that the Lyapunov
exponents do not play any role in our estimates of the derivative. In order
to do this we only need to check that they are uniformly bounded above and
separated away from zero. More precisely we prove the following.

Proposition 4.1. There exist rog > 0, A\g > 1 and K > 1 such that V) €
(A, Ao) we have

1

& < i= [ log|Fjldu < K-
Ix

Proof. First note that YA > 1 and Vz € Jy we have |F(z)| > 1. In particular

we have

/ log | FX |dpy < Xpy -
Co

There is K7 > 0 such that Re z > Kj for any z € Cy(\) and any A\ €
(1, X0), and by Proposition 5.5 there is Ky such that py(Cp) > Ks. Since
log |} (2)| = log A + Re z we deduce that

0< K1Ky < / log‘F)/\’d,U)\ < Xun
Co

This is the first part of the proof.
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For the other part note first that continuity of A — d()\) and the fact that
d(1) > 1 imply that there exist a > 1 and 8 > 0 such that a + 8 < d(\) for
any A € (1,)\g). This implies in particular that YA € (1, A\g) and Vz € J),

1 1
BV = (B ER

Consider now the following partition of the strip P : (A, )nen, with A, :=
{z€P|n—-1<Rez<n}. We have

+00 too
=2 ol <ogho + 3 [ Re )
n=1 n

“+o00
<log Ao + Z npix(An)-

n=1

Lemma 3.9 implies that there exists K3 > 0 such that py(A4,) < Ksmy(A4,)
for n > 2. Note now that

mx(4y,) =/ Xa,dmy = [ Lx(xa,)dmy-
I I

For any z € Jy and any k € Z we let z; be the preimage of z for F) such
that fi(zr) = z + 2ikw. We thus have

= XA (k)
!
keZ ‘F
With a and § defined above, this gives that
<Z|F, |Q+BXA o (21):
keZ

Since |F{(2x)] = Ae*¢ # = |z + X + 2ik|, we have

1 1
1 < A Be—Bn-1)
e e FE e
so that 1
C < A Pehn '
A(xa,)(z) <A Pe Yy 2+ A + 2ikn|®

As we have a > 1, there is K4 > 0, independent of A and z, such that

1
< Ky\°.
Z |z + X + 2ikn| !
kEZ

This tells us that
La(xa,)(z) < Kye™
Integrating with respect to my, and summing over n > 2, we get

\ <log Ao + Kgm)\(Al) + K3K4Z€_Bn < K3,
n>2
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With K5 :=log Ao + K3+ K3K4 16_;2,& 5. This is clearly independent of A and
we are done n

Note that with some more work one can indeed prove that x,, converges
towards x,, as A converges towards 1 from above.

4.2. Controlling the integral away from 0. Let N be an integer® and
set My = J,,>n41 Cn and By = Jy \ My. Note that both set My and By
depends on \.

Proposition 4.2. There exists k(N) > 0 such that VYA € [1, o] we have
| v < k)
By

Proof. Let Dy = By and for any n € N let D,, = C,. Following [Ha,Zi']
let U,, be the set of points which arrive or come back to By after exactly
n iterates, which means that U, = F/\_l(Dn_l). Note that U, N M,, = D,,.
Given Ny € N we set A,, = F)\_NO(UH) N By. Since (U,) is a partition of J),
(A,) is a partition of By and we have

+oo
@du)\ = / @du)\.

Using relation 4.1 with n = Ng + k we get

1
dd A:/ P o FNR L dy oy | duy
/Ak 8 Ak<|<F;VO+’“>'| ’ R

Using the fact that F)]\VOJFk(Ak) C By, Lemma 3.5 and Lemma 3.4 we deduce

that
K(N) / No-+k
Sduy < ——— Do Fyduy + (Ng + k A
/Ak IS e, BT i (No + F)pa(Ax)

The fact that F)]\VOJrk(Ak) C By also implies that x4, < xBy © F/{VOJF]“, from

the invariance of ) we thus get

/ Do FNotRgu, < / XBy © FYo0TR® o pNoTR gy, < / ®dyu, which leads
A

By
to

()

@du)\ﬁi/ (I)du)\-l- N()—i-ku)\Ak.
39 = 1 [y, P+ 00 R4
In order to estimate py(Ag), we first use Lemma 3.9 to conclude that
pa(Ag) < Kmy(Ag) < KmA(FA_NO(Uk)), for some constant K independent
of k, No and \. Since Uy, = Fy '(Dy,), we get i) (Ay) < Km)\(F)\_(NOH)(Dk)).
Moreover
ma(E; (D) = [0 BNy = [ £ 1),

Dy,

since there exists Kj(Ny) independent of A\ and k such that ﬁf\vﬁl(l) <

6This integer will be chosen later big enough to ensure that for any z, € C, we have
anNarg(zn) <5
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K1(Np), using Lemma 3.6 and the fact that DkK: Cnik, we get
—(No+1) 2
m(Fy (Dy) < K1(No)mx(Cnix) < m.
Using the fact that (Ng + k) < No(N + k), we thus conclude that
H(N) KK2N0
Sdpy < ——— dd —_ .
/Ak XS N1 02 S, ST N R0
Summing over k we end up with
H(N) / KK2N0
Dduy < dd —_— .
/BN NSNSy, YT N e

The integer N being fixed, one may now choose Ny big enough so that

RN fracl2, so that

No—1 —
2K Ko N,
/ Dduy < W- This last constant depends only on N and we
Bn -

are done. n

4.3. Controlling the integral in a neighborhood of 0. In this para-
graph we deal with the remaining part of [Re (¥)duy. If we note My =
Jx \ By we prove

Proposition 4.3. There exists K > 0 and N € N such that for VA € (1, o)

L1203 < [ Re (W)duy < KO — 103, ifd(\) < 3,
K .

1
——logA—1) < [ Re (V)duy < —Klog(A—1), ifd(\) =3,
K My

Re (U)duy| < K, if d(A) > 3.

L.
Proof. We split this integral into several pieces. First we note using 4.1 that

+o0o
1 _
n A

My n=N+1
We first deal with the left hand side of the sum that we bound integrating
the modulus of the function.

1 1
Re | ———T o FPN | duy| < / — Do I Ndu,y-
/ : <(F§“N)’ A ) o [(FR~Ny| A

We use Lemma 3.5 and the fact that for 2 € C,,, we have F{ N (2) € Oy C
By to conclude that

1 o

Summing over n > N we get

+oo
Z [/Cn Re (ﬁ\POF;ﬁN) d,uA]

n=N-+1

Re (U,_n) dM] .
Ch

S
< Ddyy -
(n— N2 Jp,

+oo 1
<K Qdpy )  —-
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By Proposition 4.2 we conclude that there exists K(N) > 0 such that

+o0o
Z [/Cn Re (ﬁ\ﬂ oF/{‘_N> duA]

n=N
We now deal with the right hand side. We have

/Cn Re (Vp—n)dpy = ?ZJ::/”RE <(FLf)’> dpy:

Choose N big enough so that conclusions of Lemma 3.2 hold. For any z € C,,
and any k£ < n — N we have

IRk < Re (R,

(4.2) < K(N)-

so that

[ Re ()i ~ Z / Re <W> iy

Note now that for any z € C},, we have by the Chain Rule that
(FY)' (=)
(B} () = o )
(FYTF) (FY(2))
with F' )]f (z) € Cp—k. We deduce, using Proposition 3.1, that
1 an(2)
[(EX) ()] an—k(2)
Estimates of py(C),) are given by Proposition 3.8 and we conclude that
an(2d(N\) — 1)a, (2 )Zk 1 an—k(=2) ifn <N,
La,(2d(N)an(2) 421 an-k(=2)  ifn > N

Since an(a)an(B) = an(a + B), and with Sy, (o) = >"} a;(«), this can also
be written

- ] an(2d(\) + 1)Sxn1(=2) ifn< N,
/ € ($n-n)dpr ~ Loy (2d(A) + 2)Sym1(~2) ifn > N..

Use now Corollary 5.11 we have Sy n—1(—2) ~ (an(—3) —an(—3)) if n < N,
and Sy ,—1(—2) ~ ”( 2) if g > N, and we get

an(2d(N\) + 1)(a,(=3) —an(=3)) ifn < N,
/cn Re (n—n)dior ~ { Lan(2d(N) + 2)an(~2) i > N..

Re (Yn—n)dpy ~ {

Ch

Since a,(a)an,(B) = an(a+ B) we get
an(2d(A) —2) —an(—3)a,(2d(N) + 1) if n < Ng,

n-N)dpix ~
Re (Yn—n)dpx { Lan(2d(\) if n > N..

Chn
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Summing over n > N this gives us >, -y an Re (¢n—n)duy is comparable
with B

mao (S, (2403) = 2) = an(-3)S 2N + 1), 5. o240

We then deduce from Corollary 5.10 and Corollary 5.11 that Sy n. (2d(\) +

1) ~ an(2d())) ~ 1, and also that Sy, 1eo(2d(\)) ~ DN=ZIA)  2d0)-1,

Estimates of Sy,n.(2d(\) — 2) depend on the comparison of d(\) with 2.

More precisely, if d(\) > 2 then Corollary 5.11 tells us that Sx,y. (2d(\) —

2) ~ 1, if d(\) = 2 then it tells us that Sy n.(2d(\) — 2) ~ log N., and if

d(\) < 3 then Sy, n.(2d(\) —2) ~ €243, Summarizing all those estimates
we get

1 if d(\) >

> / Re (Yn_n)dpr ~{ logN. if d()) =

n>N Cn g2dN=3if d(\) <

SV [C Sl [oV)

4.4. Proof of the main result. We are now in position to prove the main
result of this paper that we recall here.

Theorem 4.4. There exists \g > 1, and K > 1 such that

TA-DHO2 < d) < K- 12072 rd(1) < 3,
[N < K\ -Dlog 5 ifd(1) =3,
(N < K(A-1) ifd(1) > 3.

In particular the function X\ d(\) is C' on [1,+00), with d'(1) =0

Proof. Let us recall that we have

1
d'(\) = _d) < — —) Re Udpy-
Xpx A Jx
We first use [Ur,Zd?], where it is proved that A — d()\) is continuous
on [1,+00) , and Proposition 4.1 to conclude that there exists A; > 1 and
K > 1 such that VA € (1, \;) we have

1 d(\) 1
FA-D< = <1_X> < Ki(A—1)-

Note that given any integer N we have

Re Wduy = Re Yduy + Re WUdpuy,
J)\ BN MN
so that

Re Wdpuy
By

Re Wdpuy
My

)

(4.3)|d'(\)| < 2K1(A — 1) max <

> .
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We may thus use Proposition 4.2 and Proposition 4.3 to conclude that d’()\)
is converging towards 0 when A is converging towards O from above. In
particular there is Ay > 1 such that VA € [1, \y),

_1 < d’()\) < 1
2 2
We deduce that
5= 1) <d) —d(1) < 5(A - 1),

so that
(/\ o 1))\—1(/\ _ 1)2d(1)—3

IN

()\ o 1)2d()\)—3 _ ()\ o 1)2d(1)—3(}\ o 1)2(d()\)—d(1))
()\ . 1)—()\—1) ()\ . 1)2d(1)—3

IN

Since A — (A — 1)*~! is continuous on [1, Ag] there exists K3 > 1 such that

L(A S )20 < () )28 < () — )23,

K3 - -
Using again Proposition 4.2 and Proposition 4.3, and the fact we just proved
that allows us to replace d(\) with d(1), we conclude the proof of the main

- 3
result in case d(1) < 5.

In case d(1) = %, propositions 4.2 and 4.3 tells us that the maximum in
(4.3) is dominated by —log(A — 1). In case d(1) > 3, the same proposition
leads to the fact that this maximum is bounded. "

5. APPENDICES

5.1. Estimates close to a repelling/parabolic fixed point. In this ap-
pendix we show how to get estimates in case of a degeneracy towards a
multi-petal parabolic fixed point. It is a two steps proof : first we deal
with the real axis then we extend estimates obtained in the real line to the
complex plane using Koebe’s distortion Theorem.

Consider the following family of germs of holomorphic functions defined
in a neighborhood of 0 that we denote by U:

f(z) =(1+e)z+ A4 Zp+29€(z)'

Assume that there is an inverse branch f-! well defined on U that leaves
a sector Sy := {re’*| — 60 < a < 0} invariant, for some 0 < § < 5. Let
Up :=UNSy. Assume also that Vz € U we have |zg.(z)| < 3. Let I =UNRT
and assume that f=!'(I) C I and that f. is not decreasing on I.

This appendix is organized as follow : in the first two paragraphs we study

those germs giving in the second paragraph uniform estimates for |(f=™)'|.
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5.1.1. The mean value Theorem and its consequences. We start with the
following easy fact.

Lemma 5.1. Let f : R — RT be a decreasing map with antiderivative F on
R and let (up)nen be a decreasing sequence of real numbers. Suppose that
there exist n > 1 such that for all k < n we have

1- Kl < (uk — uk+1)f(uk), then Klk < F(UO) — F(uk)

- (uk — uk+1)f(uk+1) < Kg, then F(UQ) — F(uk) < ng'

Proof. One only needs to check that our assumptions imply
u

(up — upan) fur) < [ FO)dt < (u, — wp) f(wgr)

In particular we point out the following two particular cases :

Corollary 5.2. Let (z,,) be a decreasing sequence of positive real numbers.
Assume that there exist 0 < K1 < K9 and n € N such that Vk < n,

KjaPth < (2, — 2p41) < Kgxf:rll.
Then there exist K'l and Kb? such that for Vk <n
Ky < kray < Ry
Corollary 5.3. Let (uy,) be a decreasing sequence of real numbers. Assume
that there are a >0, >0, p > 0 and n € N such that Vk <n
(up — upg1) < o+ GePUrt.

Then Vk < n we have
1

arp
1
(o + Bepuo)p

Let us provide a short argument of how these corollaries can be deduced
from the Lemma 5.1.

e—ak < kU0,

Proof. For Corollary 5.2 we use the Lemma with the function f : z +—
2=+ 50 that one may take F' : z — —%x_p . We deduce that we have :

1 /1 1

Tn T
Elementary computations then lead to the desired inequalities.

For Corollary 5.3 we now consider the function f : z — (1 + gepx)_l.
One first checks that F': x +— o — %log f(x) is an antiderivative of f. Our
assumptions on (u,) may now be written as

(wr — wpg1) f(ug) <

TOne can take for instance Ky = (pK1)7% and K, = (pK2 + zip)fi
0
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Using the Lemma 5.1 we deduce that F(ug) — F(ug) < ak. This can be
written in the form

1 o + BePtr
— -1 — | < ak-
uQ Uk"‘p Og<a—|—5el’“0> <

Applying exponents to both sides of this last inequality, we deduce that

1
(Oé + [ePUk\ v e_ak < gun—uo,
o + [fepuo -

From this we get our estimates. n

5.1.2. Uniform estimates along the real azis. We now come back to our
dynamical setting. Let xg € I be a fixed element. Assume for convenience
that 29 < 1. Define for any n > 0, f-(zp41(¢)) = 2n(e), where xo(e) = xo.
For each € > 0 sufficiently small, we define N, as N. = sup{n € N|zh > ¢},
and for ¢ = 0 as Ng = 4oo. Note that for any € > 0 small enough,
the sequence (xy,()) is strictly decreasing towards 0. So that N; is a well
defined integer. Our main results in this paragraph is the following.

Proposition 5.4. There exists K > 1 such that for all € > 0 small enough,

(5.1) K 1<eN.<K, £>0,
(5.2) K-\ <aznr <K, VYn<N,
(5.3) K '<aer(l+e)" <K, VYn>N..

This result may be interpreted in the following way : N is a ”parabolic
time”. During that time, the fixed point 0 acts on the orbit of =g, (z,,), as
if it was a parabolic fixed point with p petals. For n greater than N, the
orbit of xg is close enough to 0 and realize that it is indeed an attracting
fixed point for f= 1.

In the following Lemma we obtain estimates which are true for all n € N
and part of proposition 5.4.

Lemma 5.5. There exists K > 1 such that for all € > 0 small enough,
1 1
(5.4) K lev(14+e) ™ <an <K, VneN
np
Proof. All our estimates will result from the following very definition of (x,,).
(5.5) xp = (14 ¢&)zp + xflill(l + Zrs19: (Tna1))-

Assuming that € < 1, we easily deduce from this equality that for any n we
have

(5.6) 1<

< (24 22f) <4
Tn41
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From 5.5 we deduce that

p+1

Tpn — Tnp+1 ETn+1 Tnt1

) Do S (T (o))
n n n

which, with (5.6) leads to

+1
Ky = 1 < 1 (rp P < Ty — T4l
1 =—5 < = —_—.
Ap+2 9 Tn xgr)L—l—l

-1
Using now Corollary 5.2 we conclude that Vn, xnn% < (p‘“,%) » < 64. This
is precisely the right hand side (5.4).

The left hand side of 5.4 is obtained when one notes that (5.5) also implies

that
log xy, —log &py1 =log(l+e+ab | + xf:rllgg(a:nﬂ)) <log(l+¢)+2x] ;.

We may thus apply Corollary 5.3 with the sequence w, := logz,, a =
log(1 +¢), and = 2, and deduce that

1
ar

— 1
(o 4 pepuo)p
Assuming that ¢ is small enough so that § < a = log(1 +¢) < e’ we get

—an < eUn—uo,

11
5811)(1 +e) " <e' =y,

This ends the proof of lemma 5.5. aWe are now in position to give a
proof of Proposition 5.4, but first note that the right hand side of (5.2) and
the left hand side of (5.3) are given by Lemma 5.5.

Proof. In order to get estimate (5.2), we check that the assumptions on g,
the definition of N; and relation (5.7) leads for all n < N; to

Tp — Tn+l

p+1
xn-l—l

Corollary 5.2 then tells us that Vn < N we have

)
-2

- 1
Ky <xzyne,
. . > /bp 1y—2
with, for instance, Ky = (% + =) P
0

We are now in position to give estimates for N.. They easily come out
from the following inequalities we have already proved:

(5.8) )

K1 1 K1 1 TN.—1 IN, 1 2

—— < < —F—< ——<an41<¢er <ay. < —

2 T 2 T 2 . .

K’ Ny~ K" (N.—1)r KT Ko Ne

From there we deduce that
~ 1

(5.9) K3 <erN. <2,

with Kg = K

2
K’P'
0
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Now we only need to take care of (5.3). We start by noticing that for all n
we have (1+€)z,+1 < x,,. For any n > N. we thus have (1+¢)" Ve, < zy..
This leads to

(5.10) Tn < (14¢e)"ay. (1 +e)Ne.

By definition of N, and relation (5.6) we have

TN, Korn. 41 < Koff%'

By relation (5.9) we also have

2P

(L+e)Ve < (14 )N < e

Ne

From this and (5.10) we deduce that
op 1 _

(5.11) zn < Koe® e (1 +¢)7"
Taking K = Kgp e?” finishes the proof of the Proposition.

Let now a(p) := pTJfl. The following corollary is useful

Corollary 5.6. There exists K > 1 such that for all € > 0 small enough we
have

(xp — xn+1)n°‘(p) <K Vn<N,
(2n — Tnp1)e PV (1 + )P <K V¥n> N,

7-

INIA

K—l
K—l

-
Proof. From relation (5.5) we deduce that Vn € N,

(5.12) Tp — Tptl = ETpt1 + xi—:—i(l + Tn+19 (Tn41)),

so that exp11 < o, — 41, and Lemma 5.5 tells us that the left hand side
inequality of ii- is true. Moreover, for n < N, we have ¢ < 2P |, and (5.12)
leads to @, — p41 < 3:175’;11. With Lemma 5.5, we get the right-hand side
inequality of i-.

Let n < N,. Then, from (5.2) and (5.6), we deduce that

p+1
1 1 In p+1 <

2KK€+1 no(p) — Kg-‘rl ST S (Tn — Tpg1)-

This is the left-hand side inequality of i-.

In order to finish fix n > N.. Then, by relation (5.5) and Proposition 5.4,
we get that

Tp — Tpt1 S 33:1;’;11 < 3KPTLP) (1 4 )~ (e,

The proof of the Corollary is now complete. [
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5.1.3. Ezxtension to the complex plane. As already mentioned, this extension
is done via Koebe’s distortion Theorem. It asserts that given two simply
connected domains in C, V' C V', such that the boundary of V is at a
positive distance from the boundary of V', there exists a constant K > 0,
which depends only on the modulus of the annulus V'’ \ V| and such that
for any univalent function f defined in V' we have for all z,y € V we have,

L@

< .
K~ [f'(y)l —

Proposition 5.7. Let V be a domain such that V C Uy. Then there exists

K > 0 such that Ve small enough, Yn € N and Vz € V we have

- £ < noWl(fy)(2)] <K ifn < N..

i (o) P < (Y ()] < KWL e)wHn ifn > N

€

Proof. Enlarging V if necessary one may assume that there is o € VNRTN
Uy such that for all e small enough x1(¢) := f () is also in V. Kaebe’s
distortion Theorem implies that for all n, all € and all z € V' we have

1 (@n(e) = 2nyi(e)) —nyi(, (#n(e) = Tni1(e))
K xg — x1(€) = ’(fe )( )‘ sk ro — 71(€)

Applying Corollary 5.6, and noticing that o —z1(g) > a > 0 with some real
a independent of €, lead to the desired inequalities. n

The following result gives uniform estimates on how closely the orbits are
tangent to the real axis.

Corollary 5.8. There exists K > 0 such that Ve small enough, Vn € N and

Vzo € V, we have

Tm (f"(20))] < K——

na(P)
In particular, the series Y o o Im (fZ"(20)) converges.

Proof. Note that |Zm (z,)| = |Zm (z, — x,)| < |z, — 2, |. Koebe’s distortion
theorem leads to |z, —z,| < K WM and Proposition 5.7 gives the result.
[

5.2. Estimates of some partial sums. In this appendix we single out
the behaviour of the partial sums we need to evaluate at several steps in the
proof of our main result. It seemed to us that postponing those estimates
to an appendix will clarify the exposition. We are thus in this paragraph
dealing with a sequence of real numbers defined by : a,, = 1/n for n < N,
and a, = e(1 +¢)~" for n > N,, where N, is comparable with 1/e. We are
indeed interested in the sequences (ay,(a))nen, with @ € R and a,(a) = af,
and partial sums S, (@) = >_7_; a;(a).

The first Lemma, whose proof is straightforward and left to the reader
asserts, the following.
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Lemma 5.9. For any k < n in N we have

Sy d TN KT i < Noand a1
’ lOg% Zf”SNEandazl

Shn(a) ~ é(ak(a) —ap(a)), if k > Nz and o # 0.
As its consequence, we get the following.
Corollary 5.10. If o > 0 then
i Spaola) ~ =i > N
ii- Sp4oo(®) ~ ap(a—1) ifn<N:anda>1,
)

iti- Sptoo(@) ~ logle + K ifn<N., a=1, for some K > 0.
- Sptoo(®) ~ N1 a ifn < N; and a < 1,

Proof. Since o > 0, we see that the sequence (1+¢)~*" converges to 0, and
Lemma 5.9 implies that i- is true. Note that we have

max(Sy,N. (@), SN, +o0(@)) < Sp oo < 2max(Sp,n. (@), SN, +o0(0))-

Using i- that we have just proved, the fact that we have an. ~ an_41, and
the fact that N. ~ e~!, we conclude that

AN, a—1 -«
SNE;‘FOON?NE NNE .

Let us now estimate S, n. by considering three cases. We start with the
case when a = 1. Indeed, Lemma 5.9 implies that S, n. ~ log(%). This
gives us iii-.

Assume now that a > 1. Then Sy, 400 ~ N27% < 7% = q,(a — 1).
Moreover, in virtue of Lemma 5.9, we have S, n. ~ n'=® — N1~ Thus

Sy, ~ anla—1) <1 _ <%€>a_l> .

In particular S, n. < an(a —1). So, we can conclude that S, 1oo(r) S

~

an(o—1). If = < £, we have (1 — x )71 > (1—3)*~1. And we also have
Shp4oo(@) 2 an(oz - 1) so, we are done. On the other hand, if - > %, then
Snro0(@) 2 SN, foc(@) ~ NI~ 0! ™ = ap(a — 1)

This ends the proof of ii-.
Assume finally that 0 < o« < 1. Then Lemma 5.9 tells us that

Spv.(a) ~ (N7 =n!=%) < N7~ Sy, o
We thus conclude that max(S, n. (), SN, +0o(@)) ~ SN. 4+oo. This proves
iv- and ends the proof of the Corollary. "

We can also prove the following result with the same kind of arguments.
So we omit them.
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Corollary 5.11. Let N be a fized integer such that 2N < N ~ % Then
we have the following estimates of Sy n(c) for N < n:

an(a—1) —ap(a—1) forl<a

log & fora=1 forn < N,
an(a—1) —ay(a—1) fora<1
Snn(a) ~ 1 forl<a

log N, forl =«
N7 foro<a<1
an(a) fora <0

€

forn > N,
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