Eigenvalues of Laplacian with constant magnetic field on non-compact hyperbolic surfaces with finite area - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2010

Eigenvalues of Laplacian with constant magnetic field on non-compact hyperbolic surfaces with finite area

Abderemane Morame
  • Fonction : Auteur
  • PersonId : 833852
Francoise Truc

Résumé

We consider a magnetic Laplacian $-\Delta_A=(id+A)^\star (id+A)$ on a noncompact hyperbolic surface $\mM $ with finite area. $A$ is a real one-form and the magnetic field $dA$ is constant in each cusp. When the harmonic component of $A$ satifies some quantified condition, the spectrum of $-\Delta_A$ is discrete. In this case we prove that the counting function of the eigenvalues of $-\Delta_{A}$ satisfies the classical Weyl formula, even when $dA=0. $
Fichier principal
Vignette du fichier
Ntes020310.pdf (108.2 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00462411 , version 1 (09-03-2010)
hal-00462411 , version 2 (10-05-2010)

Identifiants

Citer

Abderemane Morame, Francoise Truc. Eigenvalues of Laplacian with constant magnetic field on non-compact hyperbolic surfaces with finite area. 2010. ⟨hal-00462411v1⟩
150 Consultations
208 Téléchargements

Altmetric

Partager

More