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Abstract

We consider a magnetic Laplacian −∆A = (id+A)⋆(id+A)
on a noncompact hyperbolic surface M with finite area. A is a real
one-form and the magnetic field dA is constant in each cusp. When
the harmonic component of A satifies some quantified condition, the
spectrum of −∆A is discrete. In this case we prove that the counting
function of the eigenvalues of −∆A satisfies the classical Weyl formula,
even when dA = 0. 1

1 Introduction

We consider a smooth, connected, complete and oriented Riemannian sur-
face (M, g) and a smooth, real one-form A on M. We define the magnetic
Laplacian, the Bochner Laplacian

−∆A = (i d+ A)⋆(i d+ A) ,
( (i d+ A)u = i du+ uA , ∀ u ∈ C∞

0 (M;C) ) .
(1.1)

The magnetic field is the exact two-form ρB = dA .

If dm is the Riemannian measure on M , then

ρB = b̃ dm , with b̃ ∈ C∞(M;R) . (1.2)

1 Keywords : spectral asymptotics, magnetic field, Aharanov-Bohm, hyperbolic surface.
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The magnetic intensity is b = |b̃| .
It is well known, (see [Shu] ), that−∆A has a unique self-adjoint extension

on L2(M) , containing in its domain C∞
0 (M;C) , the space of smooth and

compactly supported functions. The spectrum of −∆A is gauge invariant :
for any f ∈ C1(M;R) , −∆A and −∆A+df have the same spectrum.

We are interested in constant magnetic fields on M in the case when
(M, g) is a non-compact geometrically finite hyperbolic surface of finite
area; (see [Per] or [Bor] for the definition and the related references). More
precisely

M =

J⋃

j=0

Mj (1.3)

where the Mj are open sets of M, such that the closure of M0 is compact,
and (J ≥ 1) the other Mj are cuspidal ends of M.

This means that, for any j, 1 ≤ j ≤ J , there exist strictly positive
constants aj and Lj such that Mj is isometric to S×]a2j ,+∞[ , equipped
with the metric

ds2j = y−2( L2
j dθ

2 + dy2 ) ; (1.4)

(S = S
1 is the unit circle and Mj ∩Mk = ∅ if j 6= k ) .

Let us choose some z0 ∈ M0 and let us define

d : M → R+ ; d(z) = dg(z, z0) ; (1.5)

dg( . , . ) denotes the distance with respect to the metric g.
It is not possible to have a constant magnetic field on M , but for any

b ∈ R
J , there exists a one-form A , such that the corresponding magnetic

field dA satisfies

dA = b̃(z)dm with b̃(z) = bj ∀ z ∈ Mj . (1.6)

The following statement on the essential spectrum is proven in [Mo-Tr1] :

Theorem 1.1 Assume (1.3) and (1.6). Then for any j , 1 ≤ j ≤ J and
for any z ∈ Mj there exists a unique closed curve through z , Cj,z in
(Mj , g) , not contractible and with zero g−curvature. The following limit
exists and is finite:

[A]Mj
= lim

d(z)→+∞

∫

Cj,z

A . (1.7)

2



If JA = {j ∈ N , 1 ≤ j ≤ J s.t. [A]Mj
∈ 2πZ } 6= ∅ , then

spess(−∆A) = [
1

4
+ min

j∈JA
b2j , +∞[ . (1.8)

If JA = ∅ , then spess(−∆A) = ∅ :
−∆A has purely discrete spectrum, (its resolvent is compact).

When the magnetic Laplacian −∆A has purely discrete spectrum, it is
called a magnetic bottle, (see [Col]).

If A = df +AH +Aδ is the Hodge decomposition of A with AH harmonic,
(dAH = 0 and d⋆AH = 0 ) , then ∀ j , [A]Mj

= [AH ]Mj
, so the discreteness

of the spectrum of −∆A depends only on the harmonic component of A . So
one can see the case JA = ∅ as an Aharonov-Bohm phenomenon [Ah-Bo],
a situation where the magnetic field dA is not sufficient to describe −∆A

and the use of the magnetic potential A is essential : we can have magnetic
bottle with null intensity.

2 The Weyl formula in the case of finite area

with a non-integer class one-form

Here we are interested in the pure point part of the spectrum. We assume
that JA = ∅ , then the spectrum of −∆A is discrete. In this case, we denote
by (λj)j the increasing sequence of eigenvalues of −∆A , (each eigenvalue is
repeated according to its multiplicity). Let

N(λ,−∆A) =
∑

λj<λ

1 . (2.1)

We will show that the asymptotic behavior of N(λ) is given by the Weyl
formula :

Theorem 2.1 Consider a geometrically finite hyperbolic surface (M, g) of
finite area, and assume (1.6) with JA = ∅ , (see (1.7 for the definition).

Then

N(λ,−∆A) = λ
|M|
4π

+ O(
λ

lnλ
) . (2.2)
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Remark 2.2 As JA depends only on the harmonic component of A , JA is
not empty when M is simply connected. In [Go-Mo] there are some results
close to Theorem 2.1, but for simply connected manifolds.

The cases where the magnetic field prevails were studied in [Mo-Tr1] and
in [Mo-Tr2].

Proof of Theorem 2.1. Any constant depending only on the bj and on
min
1≤j≤J

inf
k∈Z

|[A]Mj
− 2kπ| will be denoted invariably C .

Consider a cusp M =Mj = S×]α2,+∞[ equipped with the metric
ds2 = L2e−2tdθ2 + dt2 for some α > 0 and L > 0 .

Let us denote by −∆M
A the Dirichlet operator on M , associated to −∆A .

The first step will be to prove that

N(λ,−∆M
A ) = λ

|M |
4π

+ O(
λ

lnλ
) . (2.3)

Since −∆M
A and −∆M

A+dϕ+kdθ are gauge equivalent for any ϕ ∈ C∞(M ;R)
and any k ∈ Z , we can assume that

−∆M
A = L−2e2t(Dθ − A1)

2 +D2
t +

1

4
, with A1 = −ξ ± bLe−t , ξ ∈]0, 1[ ,

(b = bj , 2πξ − [A]M ∈ 2πZ) . Then we get that

sp(−∆M
A ) =

⋃

ℓ∈Z

sp(Pℓ) ; Pℓ = D2
t +

1

4
+

(
et
(ℓ+ ξ)

L
± b

)2

,

for the Dirichlet condition on L2(I; dt) ; I =]α2,+∞[ . This implies that

N(λ,−∆M
A ) =

∑

ℓ∈Z

N(λ, Pℓ) =
∑

ℓ∈Xλ

N(λ, Pℓ) (2.4)

with Xλ = {ℓ / eα2 |ℓ+ ξ|
L

<
√
λ− 1/4− b } .

Denoting by Qℓ the Dirichlet operator on I associated to

Qℓ = D2
t +

1

4
+

(ℓ+ ξ)2

L2
e2t ,

we easily get that

Qℓ − C
√
Qℓ ≤ Pℓ ≤ Qℓ + C

√
Qℓ . (2.5)
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Therefore one can find a constant C(b) , depending only on b , such that,
for any λ >> 1 + C(b) ,

N(λ−
√
λC(b), Qℓ) ≤ N(λ, Pℓ) ≤ N(λ +

√
λC(b), Qℓ) ; (2.6)

Applying the Weyl formula we thus get the following

Lemma 2.3 There exists C0 > 1 such that, for any λ >> 1 and any
ℓ ∈ Xλ ,

wℓ(λ− C0

√
λ) ≤ πN(λ, Pℓ) ≤ wℓ(λ+ C0

√
λ) ,

with

wℓ(µ) =

∫ +∞

α2

[
µ− (ℓ+ ξ)2

L2
e2t
]1/2

+

dt (2.7)

=

∫ T (µ,L)

α2

[
µ− (ℓ+ ξ)2

L2
e2t
]1/2

+

dt ;

(eT (µ,L) = L
√
µ/(inf

k∈Z
|ξ − k|) ) .

In view of (2.4) we now compute
∑

ℓ∈Zwℓ(µ). We first get the following

Lemma 2.4 There exists C0 > 1 such that, for any µ >> 1 and any
t ∈ [α2, T (µ, L)] ,
∣∣∣∣∣

∫

R

[
µ− (x+ ξ)2

L2
e2t
]1/2

+

dx −
∑

ℓ∈Z

[
µ− (ℓ+ ξ)2

L2
e2t
]1/2

+

∣∣∣∣∣ ≤ C0(
√
µ+

et

L
) .

This leads to

Lemma 2.5 There exists C0 > 1 such that, for any µ >> 1 ,
∣∣∣∣∣

∫ T (µ,L)

α2

∫

R

[
µ− (x+ ξ)2

L2
e2t
]1/2

+

dxdt −
∑

ℓ∈Z

wℓ(µ)

∣∣∣∣∣ ≤ C0
√
µ lnµ .

Changing variables in the integral in the right-hand side we get

Lemma 2.6 There exists C0 > 1 such that, for any µ >> 1 ,
∣∣∣∣∣

∫ T (µ,L)

α2

∫

R

[
µ− (x+ ξ)2

L2
e2t
]1/2

+

dxdt − µLe−α2

∫

R

[
1− x2

]1/2
+

dx

∣∣∣∣∣ ≤ C0
µ

lnµ
.
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Noticing that |M | = 2πLe−α2

we deduce from Lemmas 2.5 and 2.6 that

Lemma 2.7

1

π

∑

ℓ∈Z

wℓ(µ) =
|M |
4π

µ + O(
µ

lnµ
) , as µ→ +∞ .

In view of (2.4) this ends the proof of (2.3).
Now it remains to consider the whole surface M.

We have : M =

(
J⋃

j=0

Mj

)

where the Mj are open sets of M, such that the closure of M0 is compact,
and the other Mj are cuspidal ends of M and

Mj ∩Mk = ∅ , if j 6= k . We denote M0
0 = M \ (

J⋃

j=1

Mj) , then

M = M0
0

⋃
(

J⋃

j=1

Mj

)
. (2.8)

Let us denote by −∆Ω
A the Dirichlet operator on an open set Ω of M asso-

ciated to −∆A .
The minimax principle and (2.8) imply that

N(λ,−∆
M0

0

A ) +
∑

1≤j≤J

N(λ,−∆
Mj

A ) ≤ N(λ,−∆A) (2.9)

To get an upper bound we use a partition of unity. Let us consider, for any
1 ≤ j ≤ J the diffeorphism

Φj : Mj → S× [α2
j ,+∞[

and define the sets

Oλ
j = Φ−1

j (S× [α2
j , α

2
j +

1

lnλ
[) .

Then we have the following covering of M with open sets

M = Mλ
0

⋃
(

J⋃

j=0

Mj

)
, with Mλ

0 = M0
0

⋃
(

J⋃

j=0

Oλ
j

)
.
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We associate to this covering, a smooth partition of unity (ψj,λ)j=0,1,...,J ,∑

0≤j≤J

ψ2
j,λ(x) = 1, ∀x ∈ M , such that





ψj,λ = 1 on Mj \Oλ
j , (1 ≤ k ≤ J)

ψj,λ = 0 on Mk if k 6= j,
ψ0,λ = 1 on M0

0

|∇ψj,λ(x)| ≤ C lnλ

Using again minimax principle as in [Mo-Tr1], we get the following upper
bound

N(λ,−∆A) ≤ N(λ+ C ln2 λ,−∆
Mλ

0

A ) +
∑

1≤j≤J

N(λ + C ln2 λ,−∆
Mj

A ) (2.10)

The Weyl formula with remainder, (see [Hor] for smooth boundary and [Ivr]
for boundary with cone-like singularities), gives that

{
N(λ,−∆

M0

0

A ) = (4π)−1|M0
0 |λ+O(

√
λ)

N(λ+ C ln2 λ,−∆
Mλ

0

A ) = (4π)−1|Mλ
0 |(λ+ C ln2 λ) +O(

√
λ)

}
(2.11)

Noticing that |Mλ
0 |(λ+ C ln2 λ) = |M0

0 |λ+O(λ/ lnλ ),
we get (2.2) from (2.3) (with M = Mj , j = 1, . . . , J ), (2.9), (2.10) and
(2.11) �

Remark 2.8 Theorem 2.1 still holds if the metric of M is modified in a
compact set.
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