Local and global properties of solutions of heat equation with superlinear absorption - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2010

Local and global properties of solutions of heat equation with superlinear absorption

Résumé

We study the limit, when $k\to\infty$ of solutions of $u_t-\Delta u+f(u)=0$ in $R^N\times(0,\infty)$ with initial data $k\gd$, when $f$ is a positive increasing function. We prove that there exist essentially three types of possible behaviour according $f^{-1}$ and $F^{-1/2}$ belong or not to $L^1(1,\infty)$, where $F(t)=\int_0^t f(s)ds$. We emphasize the case where f(u)=u((\ln u+1))^{\alpha}. We use these results for giving a general result on the existence of the initial trace and some non-uniqueness results for regular solutions with unbounded initial data.
Fichier principal
Vignette du fichier
On-weakly-superlinear-parabolic-equation-9.pdf (332.1 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00459765 , version 1 (25-02-2010)
hal-00459765 , version 2 (26-02-2010)
hal-00459765 , version 3 (29-03-2010)
hal-00459765 , version 4 (02-06-2010)
hal-00459765 , version 5 (23-08-2010)

Identifiants

Citer

Tai Nguyen Phuoc, Laurent Veron. Local and global properties of solutions of heat equation with superlinear absorption. 2010. ⟨hal-00459765v4⟩
134 Consultations
132 Téléchargements

Altmetric

Partager

More