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Abstract

We study the limit, when k → ∞ of the solutions of ∂tu −∆u + f(u) = 0
in R

N × (0,∞) with initial data kδ, when f is a positive superlinear increasing
function. We prove that there exist essentially three types of possible behaviour
according f−1 and F−1/2 belong or not to L1(1,∞), where F (t) =

∫ t

0
f(s)ds.

We use these results for giving a general result on the existence of the ini-
tial trace and some uniqueness and non-uniqueness results for solutions with
unbounded initial data.
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1 Introduction

In this article we investigate some local and global properties of solutions of a class
of semilinear heat equations

∂tu−∆u+ f(u) = 0 (1.1)

in Q∞ := R
N × (0,∞) (N ≥ 2) where f : R+ 7→ R+ is continuous, nondecreasing

and positive on (0,∞), vanishes at 0 and tends to infinity at infinity. As a model
equation we shall consider the following, with α > 0,

∂tu−∆u+ u lnα(u+ 1) = 0. (1.2)

When f(u) = |u|βu with β > 0 much is known about the structure of the set of
solutions. The local and asymptotic behaviour of solutions is strongly linked to the
existence of a self-similar solutions under the form

u(x, t) = t−1/βw(x
√
t). (1.3)

The critical exponent βc = 2/N plays a fundamental role in the description of
isolated singularities and the study of the initial trace. This is due to the fact
that, for 0 < β < βc, there exists a positive self-similar solution with an isolated
singularity at (0, 0) and vanishing on R

N × {0} \ {(0, 0)}, while no such solution
exists when β ≥ βc and more generally, no solution with isolated singularities.

In the case of (1.2), no self-similar structure exists. There is no critical exponent
corresponding to isolated singularities since there always exist such singular solu-
tions. Actually, for any k > 0 there exists a unique u = uk ∈ C(Q∞ \ {(0, 0)}) ∩
C2,1(Q∞) solution of

{

∂tu−∆u+ u lnα(u+ 1) = 0 in Q∞

u(., 0) = kδ0 in D′(RN ).
(1.4)

There are two critical values for α: α = 1 and α = 2, the explanation of which comes
from the study of the two singular problems

{

φ′ + φ lnα(φ+ 1) = 0 in (0,∞)

φ(0) = ∞,
(1.5)

and, for any ǫ > 0,







−∆ψ + ψ lnα(ψ + 1) = 0 in R
N \Bǫ

lim
|x|→ǫ

ψ(x) = ∞,
(1.6)
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where Bǫ := {x ∈ R
N : |x| < ǫ}. When it exists, the solution φ∞ of (1.5) is given

implicitely by
∫ ∞

φ∞(t)

ds

s lnα(s+ 1)
= t ∀t > 0, (1.7)

and such a formula is valid if and only if α > 1. For problem (1.6) an explicit
expression of the solution is not valid, but this solution exists if and only if α > 2;
in this case of the Keller-Osserman condition (see (1.12) below) holds.

Having in mind this model we study (1.1) assuming the weak singularity condi-
tion on f :

∫ 1

0
sN/2f(s−N/2)ds <∞. (1.8)

Proposition 1.1 Assume (1.8) holds. Then for any k > 0, there exists a unique
solution u := uk to

{

∂tu−∆u+ f(u) = 0 in Q∞
u(., 0) = kδ0 in D′(RN ).

(1.9)

Another condition on f is
∫ ∞

1

ds

f(s)
<∞. (1.10)

Under assumption (1.10) there exists a solution φ := φ∞ to

{

φ′ + f(φ) = 0 in (0,∞)

φ(0) = ∞.
(1.11)

The next important condition on f we shall encounter is the Keller-Osserman con-
dition, i.e.

∫ ∞

1

ds
√

F (s)
<∞, (1.12)

where

F (s) =

∫ s

0
f(σ)dσ, ∀s ∈ [1,∞). (1.13)

If (1.12) is satisfied, by [4, Th III] for any ǫ > 0 there exists a maximal solution
ψ := ψǫ to







−∆ψ + f(ψ) = 0 in R
N \Bǫ

lim
|x|→ǫ

ψ(x) = ∞.
(1.14)
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The first question we consider is the study of the limit of uk when k → ∞. This
question is natural since k 7→ uk is increasing. In order to treat it, we need some
additional conditions.

(C1)- The function s 7→ f(s)

s
is increasing on (0,∞) and satisfies

lim
s→0

f(s)

s
= 0 and lim

s→∞
f(s)

s
= ∞.

(C2)- The function f is convex on (0,∞).

(C3)- If lim inf
s→∞

f(s)/(s lnα s) = 0,∀α > 2, then there exists β ∈ (1, 2] such that

lim sup
s→∞

f(s)

s lnβ s
<∞.

In the second section, we prove the following results.

Theorem 1.2 Assume the conditions (C1) and (C3) hold. If f satisfies

∫ ∞

1

ds

f(s)
= ∞, (1.15)

then the solutions uk of (1.9) satisfy lim
k→∞

uk(x, t) = ∞ for every (x, t) ∈ Q∞.

Theorem 1.3 Assume the conditions (C1)− (C3) hold. If f satisfies (1.10) and

∫ ∞

1

ds
√

F (s)
= ∞ (1.16)

where F is defined in (1.13), then the solutions uk of (1.9) satisfy lim
k→∞

uk(x, t) =

φ∞(t) for every (x, t) ∈ Q∞, where φ∞ is the solution of (1.11).

We denote by U0 the set of positive solutions u of (1.1) in in Q∞, which is continuous
in Q∞ \ {(0, 0)}, vanishes on the set {(x, 0) : x 6= 0} and satisfies

lim
t→0

∫

Bǫ

u(x, t)dx = ∞ (1.17)

for any ǫ > 0.

Theorem 1.4 Assume f satisfies (1.8) and (1.12). Then U := lim
k→∞

uk is the mini-

mal element of U0.
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In the third section we study the set of positive and locally bounded solutions
of (1.1) in Q∞. This set differs considerably according the assumption on f . This is
due to the properties of the radial solutions of the associated stationnary equation

−∆w + f(w) = 0 in R
N . (1.18)

The next result is based upon the Picard-Lipschitz fixed point theorem and a result
of Vazquez and Véron [11].

Proposition 1.5 Assume (1.16) holds. For any a > 0, there exists a unique positive
function w := wa ∈ C2([0,∞)) to the problem























−w′′ − N − 1

r
w′ + f(w) = 0 in R+

w′(0) = 0

w(0) = a.

(1.19)

A striking consequence of the existence of such solutions is the following non-
uniqueness result.

Theorem 1.6 Assume f satisfies (1.10) and (1.16). Then for any u0 ∈ C(RN )
satisfying, for some b > a > 0, wa(x) ≤ u0(x) ≤ wb(x) ∀x ∈ R

N , there exist two
solutions u, u ∈ C(Q∞) of (1.1) with initial value u0. They satisfy respectively

0 ≤ u(x, t) ≤ min{wb(x), φ∞(t)} ∀(x, t) ∈ Q∞, (1.20)

thus lim
t→∞

u(x, t) = 0, uniformly with respect to x ∈ R
N , and

wa(x) ≤ u(x, t) ≤ wb(x) ∀(x, t) ∈ Q∞, (1.21)

thus lim
|x|→∞

u(x, t) = ∞, uniformly with respect to t ≥ 0.

The next theorem shows that if two solutions of (1.1) have the same initial data
and the same asymptotic behaviour as |x| → ∞ then they coincide.

Theorem 1.7 Assume f satisfies (C1) and (1.16). Let u, ũ ∈ C(Q∞) ∩ C2,1(Q∞)
be two positive solutions of (1.1) with initial data u0. If for any ǫ > 0,

u(x, t)− ũ(x, t) = o(wǫ(|x|)) as x→ ∞ (1.22)

locally uniformly with respect to t ≥ 0, then u = ũ.
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On the contrary, if the Keller-Osserman condition holds, a continuous solution is
uniquely determined by the positive initial value u0 ∈ C(RN ), and uniqueness still
holds if C(RN ) is replaced by M+(R

N ).

Theorem 1.8 Assume f satisfies (1.12) and (C2). Then

(i) For any nonnegative function u0 ∈ C(RN) there exists a unique nonnegative
solution u ∈ C(Q∞) of (1.1) in Q∞ with initial value u0.

(ii) For any for any nonnegative measure µ ∈ M(RN ), there exists at most one
nonnegative solution u ∈ C(Q∞) of (1.1) in Q∞ such that f(u) ∈ L1

loc(Q∞) satisfying

lim
t→0

∫

RN

u(x, t)ζ(x)dx =

∫

RN

ζ(x)dµ(x) ∀ζ ∈ Cc(R
N ). (1.23)

In the last section we study the initial trace of locally bounded positive solutions
of (1.1) in Q∞.

Proposition 1.9 Let u ∈ C2,1(Q∞) be a positive solution of (1.1) in Q∞. The
set R(u) of the points z ∈ R

N such that there exists an open ball Br(z) such that

u, f(u) ∈ L1(Q
Br(z)
T ) is an open subset. Furthermore there exists a positive Radon

measure µ := µ(u) on R(u) such that

lim
t→0

∫

R(u)
u(x, t)ζ(x)dx =

∫

R(u)
ζ(x)dµ(x) ∀ζ ∈ Cc(R(u)). (1.24)

Due to Proposition 1.9, we introduce the definition of the initial trace.

Definition 1.10 The couple (S(u), µ) where S(u) = R
N \ R(u) is called the initial

trace of u in Ω and will be denoted by trRN (u). The set R(u) is called the regular
set of the initial trace of u and the measure µ the regular part of the initial trace.
The set S(u) is closed and is called the singular part of the initial trace of u.

The initial trace can also be represented by a positive, outer regular Borel measure,
not necessary locally bounded. The space of these measures on R

N will be denoted
by Breg

+ (RN ). If for every open subset A ⊂ R
N we denote by M+(A) the space

of positive Radon measures on A, there is a one-to-one correspondence between
Breg
+ (RN ) and the set of couples:

CM+(R
N ) =

{

(S, µ) : S ⊂ R
N closed, µ ∈ M+(R) with R = R

N \ S
}

. (1.25)

The Borel measure ν ∈ Breg
+ (RN ) corresponding to a couples (S, µ) ∈ CM+(R

N ) is
given by

ν(A) =

{

∞ if A ∩ S 6= ∅
µ(A) if A ⊆ S, ∀A ⊂ R

N , A Borel. (1.26)
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If u is a solution of (1.1), we shall use the notation trRN (u) (resp. TrRN (u)) for the
trace considered as an element of CM+(R

N ) (resp. Breg
+ (RN )).

We consider the case when the Keller-Osserman holds.

Theorem 1.11 Assume f is nondecreasing and satisfies (1.12). If u ∈ C2,1(Q∞)
is a positive solution of (1.1), it possesses an initial trace ν ∈ Breg

+ (RN ).

Furthermore, the following theorem deals with the existence of the maximal solu-
tion and the minimal solution of (1.1) with a given initial trace (S, µ) ∈ CM+(R

N ).

Theorem 1.12 Assume f is nondecreasing and satisfies (1.12), (1.8) and (C2).
Then for any (S, µ) ∈ CM+(R

N ) there exist a maximal solution uS,µ and a minimal
solution uS,µ of (1.1) in Q∞, with initial trace (S, µ), in the following sense:

uS,µ ≤ v ≤ uS,µ (1.27)

for every positive solution v ∈ C2,1(Q∞) of (1.1) in Q∞ such that trRN (v) = (S, µ).

If the Keller-Osserman does not holds, we obtain the following results.

Theorem 1.13 Assume (1.10), (1.16), (C1) and (C3) are verified. If u is a positive
solution of (1.1) in Q∞, it possesses an initial trace which is either the Borel measure
infinity ν∞ which satisfies ν∞(O) = ∞ for any non-empty open subset O ⊂ R

N , or
is a positive Radon measure µ on R

N .

A consequence of Theorem 1.13 which is worth mentioning is the following.

Proposition 1.14 Under the assumptions of Theorem 1.13, for any b > 0 there
exists a positive solution u ∈ C(Q∞) of (1.1) in (1.1) satisfying

max{φ∞(t);wb(|x|)} ≤ u(x, t) ≤ φ∞(t) + wb(|x|) ∀(x, t) ∈ Q∞. (1.28)

Consequently there exist infinitely many positive solutions of (1.1) with initial trace
ν∞. Furthermore φ∞ is the smallest of all these solutions.

Theorem 1.15 Assume f satisfies (1.15),(1.16), (C1) and (C3). If u is a posi-
tive solution of (1.1) in Q∞, it possesses an initial trace which is a positive Radon
measure µ on R

N .

The proofs are combination of methods developed in [8] for elliptic equations,
stability results and Theorem 1.2 and Theorem 1.3.
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2 Isolated singularities

In order to study (1.1), we start proving Proposition 1.1.

Proof of Proposition 1.1

We denote by E(x, t) = (4πt)−N/2e−|x|2/4t the fundamental solution of the heat
equation in Q∞. By [6, Remark 2.1], if for k > 0,

I :=

∫ 1

0

∫

BR

f(kE(x, t))dx dt <∞ (2.1)

for any R > 0, then there exists a unique solution u = uk to (1.1) satisfying initial
condition

uk(., 0) = kδ0

in D′(RN ). Furthermore the mapping k 7→ uk is increasing. This existence result
and the next proposition lead to the conclusion of Proposition 1.1. �

Proposition 2.1 If f satisfies (1.8) and (C1) then (2.1) is fulfilled.

Proof. We set

h(r) =
f(r)

r
r ∈ (0,∞). (2.2)

I is rewritten as

I = kC∗
∫ 1

0

∫

BR

t−N/2e−|x|2/4th(kC∗t−N/2e−|x|2/4t)dx dt

where C∗ = (4π)−N/2. Put r = |x| then dx = rN−1dr, and

I = kC∗
∫ 1

0
t−N/2

∫ R

0
e−r2/4th(kC∗t−N/2e−r2/4t)rN−1dr dt.

Wet put ρ = r√
t
, then rN−1dr = ρN−1tN/2dρ, and

I = kC∗
∫ 1

0

∫ R/
√
t

0
e−ρ2/4h(kC∗t−N/2e−ρ2/4)ρN−1dρ dt.

We set

I1 := kC∗
∫ 1

0

∫ 1

0
e−ρ2/4h(kC∗t−N/2e−ρ2/4)ρN−1dρ dt,

I2 := kC∗
∫ 1

0

∫ R/
√
t

1
e−ρ2/4h(kC∗t−N/2e−ρ2/4)ρN−1dρ dt.
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Since e−ρ2/4ρN−1 is bounded in [0,∞), then there exists a constant c1 depending
only on k such that

I1 < c1

∫ 1

0

∫ 1

0
h(kC∗t−N/2)dρ dt = c1

∫ 1

0
h(kC∗t−N/2)dt <∞.

Next we show that under the condition (1.8), I2 < ∞. In order to do that we

introduce the variable τ such that t−N/2e−ρ2/4 = τ−N/2. Then t = τe−
ρ2

2N and

dt = e−
ρ2

2N dτ . Therefore

I2 ≤ kC∗
∫ ∞

1
e−

(N+2)ρ2

4N ρN−1

(
∫ eρ

2/2N

0
h(kC∗τ−N/2)dτ

)

dρ. (2.3)

Since h satisfies (1.8), there exists ǫ > 0 (depending only on k) such that

∫ ǫ

0
h(kC∗τ−N/2)dτ

take a finite value, denoted by c2. Hence

∫ eρ
2/2N

0
h(kC∗τ−N/2)dτ ≤ c2 + h(kC∗ǫ−N/2)(e

ρ2

2N − ǫ). (2.4)

Inserting (2.4) into the right-hand side of (2.3), we obtain

I2 ≤ c3

∫ ∞

1
e−

(N+2)ρ2

4N ρN−1dρ+ c4

∫ ∞

1
e−

ρ2

4 ρN−1dρ <∞

where c3 = kC∗c2 and c4 = kC∗h(kC∗ǫ−N/2). Thus I = I1 + I2 <∞. �

The functions which satisfy the following ODE are particular solutions of (1.1)

φ′ + f(φ) = 0 in (0,∞). (2.5)

For a > 0, we denote by φa the solution of (2.5) with initial data φ(0) = a. If (1.15)
holds then lim

a→∞
φa(t) = ∞ for any t ∈ (0,∞). While, if (1.10) holds there exists a

maximal solution φ∞ given explicitely by

t =

∫ ∞

φ∞(t)

ds

f(s)
<∞.
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Lemma 2.2 If (1.15) holds then

lim inf
r→∞

f(r)

r lnα r
= 0, ∀α > 1.

If (1.10) holds then

lim sup
r→∞

f(r)

r lnα r
= ∞, ∀0 < α ≤ 1.

Proof. Case 1. Assume (1.15) holds then

J :=

∫ ∞

e

ds

f(s)
<∞. (2.6)

We put s = er
−1

and derive

J =

∫ 1

0

dr

r2h(er−1)

where h is defined in (2.2). Suppose that there exists α > 1 such that

lim inf
s→∞

f(s)

s lnα s
> 0,

equivalently,
lim inf
r→0

rαh(er
−1
) > 0,

then there exists l > 0 and r0 ∈ (0, 1) such that

h(er
−1
) > lr−α ∀r ∈ (0, r0).

Hence we derive the following contradiction

J <
1

l

∫ r0

0
rα−2dr +

∫ 1

r0

dr

r2h(er−1)
<∞.

Case 2. Assume (1.10) holds then J = ∞. Suppose that there exists α ∈ (0, 1] such
that

lim sup
s→∞

f(s)

s lnα s
<∞,

equivalently,
lim sup

r→0
rαh(er

−1
) <∞,

then there exists l > 0 and r0 ∈ (0, 1) such that

h(er
−1
) < lr−α ∀r ∈ (0, r0).
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Hence

J >
1

l

∫ r0

0
rα−2dr +

∫ 1

r0

dr

r2h(er−1)
= ∞,

which is a contradiction. �

Proof of Theorem 1.2.

Since (1.15) holds, by Lemma 2.2 and the definition (2.2) of h,

lim inf
r→∞

h(r)

lnα r
= 0 ∀α > 1.

Thus

lim inf
r→∞

h(r)

lnα r
= 0 ∀α > 2.

By (C3), there exists β ∈ (1, 2] such that

lim sup
r→∞

h(r)

lnβ r
<∞.

Hence there exist M > 0 and r0 > 0 such that

h(r) < M lnβ r ∀r ∈ (r0,∞). (2.7)

Step 1. Let k > 0, we claim that

θk(t) < 2β−1Mt(ln k)β +
MNβ

2

∫ 1

0
(ln(τ−1))βdτ ∀t ∈ (0, 1) (2.8)

where θk(t) =

∫ t

0
h(kC∗τ−N/2)dτ with C∗ = (4π)−N/2. Set r = kC∗τ−N/2 then (2.7)

becomes

h(kC∗τ−N/2) < M [ln(kC∗) +
N

2
ln(τ−1)]β ∀τ ∈ (0, τ0)

where τ0 = (kC∗)2/Nr−2/N
0 . We put a1 = ln k, a2 = N

2 ln(τ−1), and apply the
following inequality

(a1 + a2)
β ≤ 2β−1(aβ1 + aβ2 )

in order to obtain

h(kC∗τ−N/2) < M [ln(k) + N
2 ln(τ−1)]β

≤ 2β−1M [(ln k)β + (N2 )
β lnβ(τ−1)] ∀τ ∈ (0, τ0),

(2.9)

(notice that C∗ = (4π)−N/2 < 1). Integrating over [0, t] yields to (2.8).
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Step 2. It follows from (2.9) that (1.8) is fulfilled; hence by Proposition 1.1 there ex-
ists a unique solution uk of (1.1) in Q∞ with initial data kδ0. By the maximum prin-
ciple, uk(x, t) ≤ kE(x, t) for every (x, t) ∈ Q∞, which implies uk(x, t) ≤ kC∗t−N/2

for every (x, t) ∈ Q∞. Therefore, since h is increasing,

∂tuk −∆uk + ukh(kC
∗t−N/2) ≥ 0.

If we set vk(x, t) = eθk(t)uk(x, t), we obtain

∂tvk −∆vk = eθk(t)[∂tuk −∆uk + ukh(kC
∗t−N/2)] ≥ 0

and vk(., 0) = uk(., 0) = kδ0. By the maximum principle, there holds

vk(x, t) ≥ kC∗t−N/2e−|x|2/4t ⇐⇒ uk(x, t) ≥ kC∗t−N/2e−θk(t)−|x|2/4t. (2.10)

By step 1,

e−θk(t) ≥ c1e
−Mβt(ln k)β ∀t ∈ (0, 1) (2.11)

where

c1 = exp
(

− M(N)β

2

∫ 1

0
(ln(τ−1))βdτ

)

and Mβ =M2β−1. Inserting (2.11) into the right-hand side of (2.10), we get

uk(x, t) ≥ c1C
∗t−N/2eln k−Mβt(ln k)β−|x|2/4t ∀(x, t) ∈ Q1 := R

N × (0, 1).

If lim
k→∞

uk(x, t) <∞ for all (x, t) ∈ Q∞, we put U := lim
k→∞

uk, then

U(x, t) ≥ c1C
∗t−N/2eln k−Mβt(ln k)β−|x|2/4t ∀(x, t) ∈ Q1, ∀k > 0.

Let {tn} ⊂ (0, 1] be a sequence converging to 0. We choose kn = exp
(

(2Mβtn)
1

1−β

)

then ln kn −Mβtn(ln kn)
β = 1

2 ln kn. Next we restrict x in order to have

ln kn −Mβtn(ln kn)
β − |x|2

4tn
=

1

2
ln kn − |x|2

4tn
≥ 0 ⇐⇒ |x| ≤ 2

β−2
2(β−1)M

1
2(1−β)

β t
β−2

2(β−1)
n .

Therefore, since 1 < β ≤ 2,
lim
n→∞

U(x, tn) = ∞

uniformly on R
N if 1 ≤ β < 2, or uniformly on the ball Br2 where r2 = (2M)−1/2 if

β = 2. Since the sequence {tn} is arbitrary,

lim
t→0

U(x, t) = ∞

12



uniformly on R
N if 1 ≤ β < 2, or uniformly on the ball Br2 if β = 2.

We pick some point x0 in R
N (resp. Br2) if 1 < β < 2 (resp. β = 2). Since for

any k > 0, the solution ukδx0 of (1.1) with initial data kδx0 can be approximated by
solutions with bounded initial data and support in Bσ(x0) where 0 < σ < r2 − |x0|,
it follows

U(x, t) ≥ ukδx0 (x, t) = uk(x− x0, t),

by comparison principle. Letting k → ∞ yields to U(x, t) ≥ U(x−x0, t). Interverting
the role of 0 and x0 yields to U(x, t) = U(x − x0, t). If we iterate this process we
derive

U(x, t) = U(x− y, t) ∀y ∈ R
N .

This implies that U(x, t) is independent of x and therefore it is a solution of (1.11).
By (1.15), U(x, t) = ∞ for any (x, t) ∈ Q∞, which is a contradiction and the
conclusion follows. �

Proposition 2.3 Assume (1.10) is satisfied. For any k > 0, there holds

uk(x, t) ≤ φ∞(t) ∀(x, t) ∈ Q∞.

Proof. For any small ǫ > 0, we set φ∞ǫ(t) = φ∞(t − ǫ), t ∈ [ǫ,∞) then φ∞ǫ is
a solution of (1.1) in (ǫ,∞), which dominates uk on R

N × {ǫ} for any k > 0. By
comparison principle, uk(x, t) ≤ φ∞ǫ(t) for every (x, t) ∈ R

N ×(ǫ,∞). Letting ǫ → 0
yields the claim. �

A necessary and sufficient condition for the existence of a maximal solution to
the stationary equation

−∆w + f(w) = 0

in a bounded domain Ω is the Keller-Osserman condition (1.12) ([4], [9]). If f is
convex and (1.12) holds, then (1.10) is fulfilled. The Keller-Osserman condition can
be replaced by another condition, which owes to the following result.

Lemma 2.4 Assume f is convex on (0,∞). Set

L :=

∫ ∞

1

ds
√

sf(s)
.

Then (1.12) holds if and only if L <∞.

Proof. In order to obtain the assertion, it is sufficient to show that

s f(
s

2
) ≤ F (s) ≤ s f(s) ∀s ≥ 1. (2.12)

13



The right-hand side estimate in (2.12) follows from the monotone property of f .
The assumption of convexity of f in (0,∞) implies

f(s) ≥ f(
s

2
) +

s

2
f ′(

s

2
) ∀s > 0.

Define ϕ(s) =

∫ s

0
f(σ)dσ − sf( s2), then ϕ′(s) = f(s) − f( s2) − s

2f
′( s2) ≥ 0. Hence

ϕ(s) > ϕ(0) = 0, which leads to the left-hand side estimate in (2.12). �

By using the same argument as in the proof of the Lemma 2.2 and thank to the
Lemma 2.4, we obtain the following lemma.

Lemma 2.5 If (1.16) holds then

lim inf
r→∞

f(r)

r lnα(r)
= 0 ∀α > 2.

If (1.12) holds then

lim sup
r→∞

f(r)

r lnα(r)
= ∞ ∀0 < α ≤ 2.

Proof of Theorem 1.3.

Since (1.16) holds, by Lemma 2.5 and the definition (2.2) of h,

lim inf
r→∞

h(r)

lnα r
= 0 ∀α > 2.

By (C3), there exists β ∈ (1, 2] such that lim sup
r→∞

h(r)/ lnβ r <∞. Hence there exists

M > 0 and r0 > 0 such that

h(r) < M lnβ r ∀r ∈ (r0,∞). (2.13)

Step 1. For any k > 0 we set

θk(t) =

∫ t

0
h(kC∗τ−N/2)dτ

where C∗ = (4π)−N/2. We claim that

θk(t) < 2β−1Mt(ln k)β +
MNβ

2

∫ 1

0
(ln(τ−1))βdτ ∀t ∈ (0, 1). (2.14)

If we define τ by r = kC∗τ−N/2, (2.13) becomes

h(kC∗τ−
N
2 ) < M [ln(kC∗) +

N

2
ln(τ−1)]β ∀τ ∈ (0, τ0)

14



where τ0 = (kC∗)2/Nr−2/N
0 . We set a1 = ln k, a2 = N

2 ln(τ−1), and apply the
following inequality

(a1 + a2)
β ≤ 2β−1(aβ1 + aβ2 )

in order to obtain (notice that C∗ < 1)

h(kC∗τ−N/2) < M [ln(k) + N
2 ln(τ−1)]β

≤ 2β−1M [(ln k)β + (N2 )
β lnβ(τ−1)].

(2.15)

Integrating over [0, t], we obtain (2.14).

Step 2. It follows from (2.15) that (1.8) is fulfilled; hence by Proposition 1.1 there
exists a unique solution of (1.1) in Q∞ with initial trace kδ0. By maximum principle,
uk(x, t) ≤ kE(x, t) for every (x, t) ∈ Q∞, which implies that uk(x, t) ≤ kC∗t−N/2

for every (x, t) ∈ Q∞. Therefore, since h is increasing,

∂tuk −∆uk + ukh(kC
∗t−N/2) ≥ 0.

We set vk(x, t) = eθk(t)uk(x, t) and obtain

∂tvk −∆vk = eθk(t)[∂tuk −∆uk + ukh(kC
∗t−N/2)] ≥ 0,

with vk(., 0) = uk(., 0) = kδ0. By maximum principle, it follows

vk(x, t) ≥ kC∗t−N/2e−|x|2/4t ⇐⇒ uk(x, t) ≥ kC∗t−N/2e−θk(t)−|x|2/4t. (2.16)

By step 1,

e−θk(t) ≥ c1e
−Mβt(ln k)β ∀t ∈ (0, 1) (2.17)

where c1 = exp
(

− M(N)β

2

∫ 1
0 (ln(τ

−1))βdτ
)

and Mβ =M2β−1. Inserting (2.17) into

the right-hand side of (2.16), we get

uk(x, t) ≥ c1C
∗t−N/2elnk−Mβt(ln k)β−|x|2/4t ∀(x, t) ∈ Q1 = R

N × (0, 1).

Since k 7→ uk is increasing, by Proposition 2.3 there exists U := lim
k→∞

uk and U ≥ uk.

Hence

U(x, t) ≥ c1C
∗t−N/2eln k−Mβt(ln k)β−|x|2/4t ∀(x, t) ∈ Q1,∀k > 0.

Let {tn} ⊂ (0, 1] be a sequence converging to 0. We choose kn = exp((2Mβtn)
1

1−β ),
equivalently ln kn −Mβtn(ln kn)

β = 1
2 ln kn. Next we restrict |x| in order

ln kn −Mβtn(ln kn)
β − |x|2

4tn
=

1

2
ln kn − |x|2

4tn
≥ 0 ⇐⇒ |x| ≤ rβ t

β−2
2(β−1)
n ,
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where rβ = 2
β−2

2(β−1)M
1

2(1−β)

β . Because 1 < β ≤ 2, it follows

lim
n→∞

U(x, tn) = ∞,

uniformly on R
N if 1 ≤ β < 2, or uniformly on the ball Br2 where r2 = (2M)−

1
2 if

β = 2. Since the sequence {tn} is arbitrary,

lim
t→0

U(x, t) = ∞

uniformly on R
N if 1 ≤ β < 2, or uniformly on the ball Br2 if β = 2.

We pick some point x0 in R
N (resp. Br2) if 1 < β < 2 (resp. β = 2). Since for

any k > 0, the solution ukδx0 of (1.1) with initial data kδx0 can be approximated by
solutions with bounded initial data and support in Bσ(x0) where 0 < σ < r2 − |x0|,
it follows

U(x, t) ≥ ukδx0 (x, t) = uk(x− x0, t),

by comparison principle. Letting k → ∞ yields to U(x, t) ≥ U(x− x0, t). Reversing
the role of 0 and x0 yields to U(x, t) = U(x − x0, t). If we iterate this process we
derive

U(x, t) = U(x− y, t) ∀y ∈ R
N .

This implies that U(x, t) is independent of x and therefore it is a solution of (1.11)
Since (1.10) holds, U(x, t) = φ∞(t) for every (x, t) ∈ Q∞. �

Proposition 2.6 Assume (1.12) and (1.8) are satisfied. Then for any k > 0 there
holds

uk(x, t) ≤ Φ(|x|) ∀(x, t) ∈ Q∞

where Φ is a solution to the problem

{

−Φ′′ + f(Φ) = 0 in (0,∞)
lim
s→0

Φ(s) = ∞.

Proof. Step 1: Upper estimate. Since f satisfies (1.12), by [4] for any R > 0, there
exists a solution wR to the problem

{

−∆wR + f(wR) = 0 in BR,
lim

|x|→R
wR(x) = ∞, (2.18)

and wR is nonnegative since f(0) = 0. Notice also that R 7→ wR is decreasing,
since f is nondecreasing; moreover limR→∞wR = 0, since f(0) = 0 and f is positive
on (0,∞). Let x0 6= 0 arbitrary in R

N . Set E = {~e : |~e| = 1} and take ~e ∈ E.
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Put x~e = |x0|~e and for n > |x0| put an = n~e. Denote by H~e the open half-space
generated by ~e and its orthogonal hyperplane at the origin, then x~e, an ∈ H~e. Take
R such that n − |x0| < R < n. We set W~e,n,R(x) = wR(x − an), then W~e,n,R is a
solution of (1.1) in BR(an) and blows-up on the boundary lim

|x−an|→R
W~e,n,R(x) = ∞.

By the maximum principle,

uk(x, t) ≤W~e,n,R(x) ∀(x, t) ∈ BR(an)× (0,∞). (2.19)

The sequence {W~e,n,R} is decreasing with respect to R and is bounded from below
by uk, then there exists W~e,n := lim

R→n
W~e,n,R satisfying

uk(x, t) ≤W~e,n(x) ∀(x, t) ∈ Bn(an)× (0,∞). (2.20)

The sequence {W~e,n} is also decreasing with respect to n and is bounded from below
by uk, then there exists W~e,∞ := lim

n→∞
W~e,n. Letting n→ ∞ in (2.20) yields to

uk(x, t) ≤W~e,∞(x) ∀(x, t) ∈ H~e × (0,∞). (2.21)

In particular,
uk(x~e, t) ≤W~e,∞(x~e). (2.22)

Since uk is radial, it follows that

uk(x0, t) = uk(x~e, t) ≤W~e,∞(x~e).

For any r > 0, n > r, n− r < R < n and ~e, ~e′ ∈ E, since wR is radial,

wR(r~e− n~e) = wR(r~e′ − n~e′).

Letting successively R→ n, n→ ∞ yields to

W~e,∞(r~e) =W~e′,∞(r~e′).

Define Φ̃(r) :=W~e,∞(r~e), ∀r ∈ (0,∞) then it satisfies







−Φ̃′′ − N − 1

r
Φ̃′ + f(Φ̃) = 0 in (0,∞)

lim
r→0

Φ̃(r) = ∞,
(2.23)

and
uk(x, t) ≤ Φ̃(|x|) ∀(x, t) ∈ Q∞. (2.24)

Step 2: End of the proof. We claim that

Φ̃(r) ≤ Φ(r) ∀r ∈ (0,∞). (2.25)
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For any ǫ > 0, we set Φǫ(r) = Φ(r − ǫ), r > ǫ then Φǫ is a solution of

− Φ′′
ǫ + f(Φǫ) = 0 in (ǫ,∞) (2.26)

verifying lim
r→ǫ

Φǫ(r) = ∞. Since Φ′
ǫ ≤ 0, Φǫ is a supersolution of the equation in

(2.23) in (ǫ,∞), which dominates Φ̃ at r = ǫ. By the maximum principle, Φ̃ ≤ Φǫ

in (ǫ,∞). Letting ǫ → 0 yields (2.25). Combining (2.24) and (2.25) leads to the
conclusion. �

Remark. Combining Proposition 2.3 and Proposition 2.6 yields to

uk(x, t) ≤ min{φ∞(t),Φ(|x|)} ∀(x, t) ∈ Q∞,∀k > 0. (2.27)

Proof of Theorem 1.4.

The sequence {uk} is increasing with respect to k and is bounded from above by
(2.27) then there exists U := lim

k→∞
uk satisfying

U(x, t) ≤ min{φ∞(t),Φ(|x|)} ∀(x, t) ∈ Q∞,∀k > 0. (2.28)

Moreover, U ∈ U0 because U has the following properties:
(i) It is positive in Q∞, belongs to C(Q∞ \{(0, 0)}) and vanishes on the set {(x, 0) :
x 6= 0}.
(ii) It satisfies (1.1) and

lim
t→0

∫

Bσ

U(x, t)dx = ∞, ∀σ > 0. (2.29)

In the sense of initial trace in Definition 4.3, U has initial trace trRN (U) = ({0}, 0)
(here {0} is the singular part and the Radon measure on R

N\{0} is the zero measure)
and the conclusion follows from Proposition 4.5. �

By a simple adaptation of the proof of Proposition 2.3 and Proposition 2.6 it is
possible to extend (2.28) to any positive solution vanishing on R

N × {0} \ {(0, 0)}.

Proposition 2.7 Assume (1.12) and (C2) are satisfied. Then any positive solution
u ∈ C2,1(Q∞) of (1.1) satisfies

u(x, t) ≤ φ∞(t) ∀(x, t) ∈ Q∞. (2.30)

If we assume moreover that u ∈ C(Q∞ \ {(0, 0)}) vanishes on R
N × {0} \ {(0, 0)},

there holds
u(x, t) ≤ min{φ∞(t),Φ(|x|)} ∀(x, t) ∈ Q∞. (2.31)
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Proof. Since f(0) = 0 and due to the convexity of f , the following inequality holds

f(a+ b) ≥ f(a) + f(b) ∀a, b > 0, (2.32)

which implies that for any R, τ > 0, (x, t) 7→ φ∞(t− τ)+wR(x) is a supersolution of
(1.1) in BR × (τ,∞). This function dominates u on the parabolic boundary, thus in
the domain itself by the comparison principle. Since f(r) > 0 if r > 0, lim

R→∞
wR = 0

in R
N . Therefore

u(x, t) ≤ φ∞(t) = lim
τ→0

lim
R→∞

(φ∞(t− τ) +wR(x)) ∀(x, t) ∈ Q∞.

For the second estimate we notice that (2.19) is valid with uk replaced by u (and
without assumption (1.8) since existence is assumed). The remaining of the proof
of Proposition 2.6 is similar and yields to

u(x, t) ≤ Φ(|x|) ∀(x, t) ∈ Q∞.

This implies (2.31). �

It is also possible to construct a maximal element of U0 (U0 is defined in Theo-
rem 1.4). For ℓ > 0 and ǫ > 0, let u := Uǫ,ℓ be the solution of

{

∂tu−∆u+ f(u) = 0 in Q∞
u(x, 0) = ℓχBǫ in R

N .

Lemma 2.8 For any τ > 0 and ǫ > 0, there exist ℓ > 0 and m(τ, ǫ) > 0 such that
any positive solution u of (1.1) which verifies (i) in the proof of Theorem 1.4 satisfies

u(x, t) ≤ Uǫ,ℓ(x, t− τ) +m(τ, ǫ) ∀(x, t) ∈ Q∞, t ≥ τ. (2.33)

Furthermore
lim
τ→0

m(τ, ǫ) = 0 ∀ǫ > 0. (2.34)

Finally
U(x, t) = lim

τ→0
lim
ǫ→0

lim
ℓ→∞

(Uǫ,ℓ(x, t− τ) +m(τ, ǫ)) (2.35)

is the maximal element of U0.

Proof. We set ℓ = φ∞(τ), then u(x, τ) ≤ ℓ for any x ∈ R
N . Let W := Wǫ/2 be the

solution of the following Cauchy-Dirichlet problem










∂tW −∆W + f(W ) = 0 in Bc
ǫ/2 × (0,∞)

W (x, 0) = 0 in Bc
ǫ/2

W (x, t) = φ∞(t) in ∂Bc
ǫ/2 × (0,∞)

(2.36)
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and put m(τ, ǫ) := max{Wǫ/2(x, δ) : |x| > ǫ, 0 < δ ≤ τ}. It is clear to see that

lim
τ→0

m(τ, ǫ) =Wǫ/2(x, 0) = 0. (2.37)

From the fact that u(x, 0) = 0 in Bc
ǫ/2, u(x, t) ≤ φ∞(t) in ∂Bc

ǫ/2 × (0,∞) and the

maximum principle, it follows that u(x, t) ≤Wǫ/2(x, t) in B
c
ǫ/2 × (0,∞).

Next, we compare Uǫ,ℓ(., . − τ) + m(τ, ǫ) with u in R
N × (τ,∞). The func-

tion Uǫ,ℓ(., . − τ) + m(τ, ǫ) is a supersolution of (1.1) in R
N × (τ,∞). If x ∈ Bǫ,

Uǫ,ℓ(x, 0) = ℓ ≥ u(x, τ), which implies Uǫ,ℓ(x, 0) + m(τ, ǫ) ≥ u(x, τ). If x ∈ Bc
ǫ ,

m(τ, ǫ) ≥ Wǫ/2(x, τ) ≥ u(x, τ), hence Uǫ,ℓ(x, 0) + m(τ, ǫ) ≥ u(x, τ). So we always

have Uǫ,ℓ(x, 0) + m(τ, ǫ) ≥ u(x, τ) for any x ∈ R
N . Applying maximum principle

yields to Uǫ,ℓ(., .− τ) +m(τ, ǫ) ≥ u in R
N × (τ,∞). Finally, the function U defined

by (2.35) is the maximal solution because Uǫ,ℓ(x, t − τ) → Uǫ,ℓ(x, t) as τ → 0 and
Uǫ,ℓ ↑ Uǫ,∞ when ℓ→ ∞ and Uǫ,∞ ↓ U when ǫ→ 0. �

3 About uniqueness

We prove first the existence of global radial solutions of (1.18) under the Keller-
Osserman condition.

Proof of Proposition 1.5.

A solution of (1.19) is locally given by the formula

w(r) = a+

∫ r

0
s1−N

∫ s

0
tN−1f(w)dtds (3.1)

Existence follows from the Picard-Lipschitz fixed point theorem. The function is
increasing and defined on a maximal interval [0, ra). By a result of Vazquez and
Veron [11] ra = ∞, thus the solution is global. Uniqueness on [0,∞) follows always
from local uniqueness. The function r 7→ w(r) is increasing and

w′(r) ≥ ah(a)

N
r,

w(r) ≥ a+
ah(a)

2N
r2

for all r > 0. �

Proposition 3.1 Assume (1.16) holds. For any u0 ∈ C(RN) which satisfies

wa(|x|) ≤ u0(x) ≤ wb(|x|) ∀x ∈ R
N (3.2)

for some 0 < a < b, there exists a positive function u ∈ C(Q∞)∩C2,1(Q∞) solution
of (1.1) in Q∞ and satisfying u(., 0) = u0 in R

N . Furthermore

wa(|x|) ≤ u(x, t) ≤ wb(|x|) ∀(x, t) ∈ Q∞. (3.3)
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Proof. Clearly wa and wb are ordered solutions of (1.1). We denote by un the
solution of the initial-boundary problem







∂tun −∆un + f(un) = 0 in Qn = Bn × (0,∞)
un(x, t) = (wa(|x|) + wb(|x|))/2 in ∂Bn × (0,∞)
un(x, 0) = u0(x) in Bn.

(3.4)

By the maximum principle, un satisfies (3.3) inQn. Using locally parabolic equations
regularity theory, we derive that the set of functions {un} is eventually equicontin-
uous on any compact subset of Q∞. Using a diagonal sequence, we conclude that
there exists a subsequence {unk

} which converges locally uniformly in Q∞ to some
weak solution u ∈ C(Q∞) which satisfies u(., 0) = u0 in R

N . By standard method,
u is a strong solution (at least C2,1(Q∞)). �

Proposition 3.2 Assume (1.16) and (1.10) hold. Then for any u0 ∈ C(RN ) which
satisfies

wa(|x|) ≤ u0(x) ≤ wb(|x|) ∀x ∈ R
N (3.5)

for some 0 < a < b, there exists a positive function u ∈ C(Q∞) solution of (1.1) in
Q∞ satisfying u(., 0) = u0 in R

N and

u(x, t) ≤ min{φ∞(t), wb(|x|)} ∀(x, t) ∈ Q∞. (3.6)

Proof. For any R > 0, let uR be the solution of

{

∂tuR −∆uR + f(uR) = 0 in Q∞
uR(x, 0) = u0(x)χBR

(x) in R
N .

(3.7)

The solution which is constructed is dominated by the solution of the heat equation
with the same initial data. Thus

uR(x, t) ≤ (4πt)−N/2

∫

BR

e−|x−y|2/4tu0(x)dy ∀(x, t) ∈ Q∞. (3.8)

and lim
|x|→∞

uR(x, t) = 0 uniformly with respect to t. The functions φ∞ and wb are

solutions of (1.1) in Q∞, which dominate uR at t = 0. By the maximum principle,

min{φ∞(t), wb(|x|)} ≥ uR(x, t) ∀(x, t) ∈ Q∞. (3.9)

The fact that the mapping R 7→ uR is increasing and (3.9) imply that there exists
u := lim

R→∞
uR which satisfies u(., 0) = u0 in R

N . Letting R→ ∞ in (3.9) yields (3.6).

�

Proof of Theorem 1.6.
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Combining Proposition 3.1 and Proposition 3.2 we see that there exists two
solutions u and u with the same initial data u0 which are ordered and different since
lim

|x|→∞
u(x, t) = ∞ and lim

|x|→∞
u(x, t) ≤ φ∞(t) <∞ for all t > 0. �

Proof of Theorem 1.7.

Step 1: There always holds

(ah(a) − bh(b))sign(a − b) ≥ |a− b|h(|a− b|) ∀a, b > 0 (3.10)

where h is defined in (2.2) and

sign(z) =







1 if z > 0,
−1 if z < 0,
0 if z = 0.

In fact, since h is increasing and assuming a > b, we get

ah(a)− bh(b) = (a− b)h(a) + b(h(a)− h(b))
≥ (a− b)h(a)
≥ (a− b)h(a− b).

Step 2: End of the proof. By Kato’s inequality,

∂t |u− ũ| −∆ |u− ũ| ≤ [∂t(u− ũ)−∆(u− ũ)]sign(u − ũ),

therefore by step 1,

∂t |u− ũ| −∆ |u− ũ|+ |u− ũ| h(|u− ũ|) ≤ 0. (3.11)

Let ǫ > 0. There exists Rǫ > 0 such that for any R ≥ Rǫ,

0 ≤ |u− ũ| (x, t) ≤ wǫ(|x|) ∀(x, t) ∈ Bc
R × [0, 1]. (3.12)

Since wǫ is a positive solution of (1.1) which dominates |u− ũ| on ∂BR × [0, 1] and
at t = 0, it follows that |u− ũ| ≤ wǫ in BR × [0, 1]. Letting R → ∞ yields to
|u− ũ| ≤ wǫ in R

N × [0, 1]. Letting ǫ→ 0 and since lim
ǫ→0

wǫ(|x|) = 0 for any x ∈ R
N ,

we derive |u− ũ| = 0, thus u = ũ in R
N × [0, 1]. Iterating yields that equality holds

in Q∞. �

Remark. If we replace the condition (C1) by the condition (C2), the conclusion of
Theorem 1.7 remains valid. Indeed, it follows by the convexity of f that

(f(a)− f(b))sign(a− b) ≥ f(|a− b|) ∀a, b > 0.

22



Then we proceed as in step 2 to get the desired conclusion.

Proof of Theorem 1.8.

Proof of statement (i). The solution u which is constructed in Proposition 3.2 is a
minimal solution of (1.1) in Q∞ with the initial value u0. Indeed, if u ∈ C2,1(Q∞)
is a nonnegative solution of (1.1) in Q∞ which satisfies u(., 0) = u0 in R

N then,
by maximum principle, uR ≤ u in Q∞ where uR is the solution of (3.7). Letting
R → ∞ yields u ≤ u in Q∞. Next we construct the maximal solution. We recall
that wR is the solution of (2.18). Since f is convex and f(0) = 0, there holds
f(wR) + f(uR) ≤ f(wR + uR). Consequently wR + uR is a supersolution of (1.1)
in BR × (0,∞). If u ∈ C(Q∞) is a solution (1.1) in Q∞ with initial data u0, it
is dominated by wR + uR on (∂BR × (0,∞)) ∪ (BR × {0}). Thus, by maximum
principle, u ≤ wR + uR in BR × (0,∞). Since

uR ≤ u ≤ wR + uR,

wR → 0 when R → ∞, by Proposition 2.6-Step 1, and uR → u, we derive that
u = u.

Proof of statement (ii).

Step 1: Construction of a minimal solution. Assume there exists at least one positive
solution u of (1.1) satisfying (1.23) and f(u) ∈ L1

loc(Q∞), equivalently [7]

∫ ∞

0

∫

RN

(−u(∂tη +∆η) + f(u)η) dxdt =

∫

RN

η(x, 0)dµ(x) (3.13)

for all η ∈ C2,1
c (Q∞). We construct first a minimal solution in the following way:

let n ∈ N and R > 0 and let v = vR,n be the solution of














∂v −∆v + f(v) = 0 in BR × (0,∞)

v = 0 in ∂BR × (0,∞)

v(., 0) = u(., 2−n) in BR.

(3.14)

By the maximum principle, vR,n(., t) ≤ u(., t + 2−n). Furthermore,

vR,n(x, 2
−n) ≤ u(x, 2−n+1) = vR,n−1(x, 0),

therefore,
vR,n(x, t+ 2−n) ≤ vR,n−1(x, t) in BR × (0,∞). (3.15)

Using the formulation (3.13) with vR,n, we obtain

∫ ∞

0

∫

RN

(−vR,n(∂tη +∆η) + f(vR,n)η) dxdt =

∫

RN

η(x, 0)u(x, 2−n)dx, (3.16)
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for any η ∈ C2,1
c (QBR∞ ). The right-hand side of (3.16) converges to

∫

RN η(x, 0)dµ(x)
as n → ∞. Concerning the left-hand side, there holds f(vR,n(x, t)) ≤ f(u(x, t +

2−n)). Since f(u) ∈ L1
loc(Q∞), f(vR,n) is bounded in L1

loc(Q
BR∞ ). By the L1 reg-

ularity theory for parabolic equations (see [6] and the references therein), the set
of functions {vR,n} is locally compact in L1

loc(Q∞) and there exists a subsequence
{nk} and a function uR such that vR,nk

→ uR, almost everywhere in QBR∞ , and
uR ≤ u. Noticing that the sets of functions {f(u(., . + 2−n))} and {u(., . + 2−n)}
are uniformly integrable, we obtain that the two sets {f(vR,n)} and {vR,n} are also
uniformly integrable in BR × (0, T ). It follows from Vitali’s convergence theorem
that, up to a subsequence still denoted by {nk}, vR,nk

→ uR and f(vR,nk
) → f(uR)

in L1(BR × (0, T )). Letting n = nk → ∞ in (3.16) we derive
∫ ∞

0

∫

RN

(−uR(∂tη +∆η) + f(uR)η) dxdt =

∫

RN

η(x, 0)dµ(x). (3.17)

This means that uR satisfies uR ≤ u and














∂uR −∆uR + f(uR) = 0 in BR × (0,∞)

uR = 0 in ∂BR × (0,∞)

uR(., 0) = χ
BR
µ in BR.

(3.18)

If ũ is any other nonnegative solution of (1.1) in Q∞ with initial data µ, the same
construction of ṽR,n solution of (3.14) with initial data ũ(., 2−n) instead of u(., 2−n)
converges, up to a subsequence to some ũR which satisfies ũR ≤ ũ and is solution
of problem (3.18). We know from [5], [6] that this problem admits at most one
solution. Therefore ũR = uR, which implies that uR ≤ ũ in QBR∞ . Furthermore, in
the above construction, we have only used the fact that ũ is defined in a domain
larger than QBR∞ and is nonnegative. Consequently, the same comparison applies if
we compare uR and uR′ for R′ > R and we obtain

uR ≤ uR′ in QBR∞ .

Put u = limR→∞ uR. Using the monotone convergence theorem and a test function
η ∈ C2,1

c (Q∞) with compact support in QBR∞ , we obtain
∫ ∞

0

∫

RN

(−u(∂tη +∆η) + f(u)η) dxdt =

∫

RN

η(x, 0)dµ(x). (3.19)

from (3.17). Thus u satisfies (1.23) and f(u) ∈ L1
loc(Q∞). By construction u is

smaller than any other nonnegative solution.

Step 2: End of proof of statement (ii). As in the proof of statement (i), we see that,
for any n ∈ N

∗, there holds u ≤ wR+vR,n in QBR∞ where wR is the maximal solution
of (2.18). Consequently u ≤ wR + uR and letting R → ∞, u ≤ u. Thus u = u.
�
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4 Initial trace

If Ω is an open domain in R
N , we denote by M(Ω) (resp. Mb(Ω)) the set of Radon

measures in Ω (resp. bounded Radon measures), and by M+(Ω) (resp. M
b
+(Ω)) its

positive cone. For T > 0, we set QΩ
T = Ω× (0, T ).

4.1 The regular part of the initial trace

In this section we only assume that f is a continuous nonnegative function defined
on R+ and that u is a C2,1 positive solution of (1.1) in QT .

Lemma 4.1 Assume G is a bounded C2 domain in R
N , QG

T := G × (0, T ] and let

u ∈ C2,1(QG
T ) be a positive solution of (1.1) in QG

T such that u, f(u) ∈ L1(QG
T ).

Then u ∈ L∞(0, T ;L1(G′)) for any domain G′ ⊂ G′ ⊂ G and there exists a positive
Radon measure µG on G such that

lim
t→0

∫

G
u(x, t)ζ(x)dx =

∫

G
ζ(x)dµG(x) ∀ζ ∈ Cc(G). (4.1)

Proof. Let φ := φG be the first eigenfunction of −∆ in W 1,2
0 (G) with corresponding

eigenvalue λG. We assume φ > 0 in G. Then

d

dt

∫

G
uφdx+ λG

∫

G
uφdx+

∫

G
f(u)φdx+

∫

∂G
uφndS = 0

where φn denote the outward normal derivative of φ. Since φn < 0, the function

t 7→ eλGt

∫

G
u(x, t)φ(x)dx −

∫ T

t

∫

G
eλGsf(u)φdx ds

is increasing and

∫

G
u(x, t)φ(x)dx ≤ eλG(T−t)

∫

G
u(x, T )φ(x)dx + e−λGt

∫ T

t

∫

G
eλGsf(u)φdx ds

for 0 < t ≤ T . Thus u ∈ L∞(0, T ;L1(G′)) for any strict domain G′ of G. If
ζ ∈ C2

c (G), there holds

d

dt

(
∫

G
u(x, t)ζ(x)dx −

∫ T

t

∫

G
(f(u)ζ − u∆ζ)dx ds

)

= 0. (4.2)

Consequently

lim
t→0

∫

G
u(x, t)ζ(x)dx =

∫

G
u(x, T )ζ(x)dx+

∫ T

0

∫

G
(f(u)ζ − u∆ζ) dx ds. (4.3)
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This implies that u(., t) admits a limit in D′(G), and this limit is a positive distri-
bution. Therefore there exists a positive Radon measure µG on G satisfies (4.1).
�

Proof of Proposition 1.9.

It is clear that R(u) is an open subset. If G is a strict bounded subdomain
of R(u), i.e. G ⊂ R(u), there exists a finite number of points zj (j = 1, ..., k) and

r′j > rj > 0 such that u, f(u) ∈ L1(Q
Br′

j
(zj)

T ) and G ⊂ ∪k
j=1Brj (zj). Let µj = µBrj (zj)

the measure defined in Lemma 4.1. If ζ ∈ Cc(G) there exists a partition of unity
{ηj}kj=1 relative to the cover {Brj (zj)}kj=1 such that ηj ∈ C∞

0 (G), supp(ηj) ⊂ Brj (zj)

and ζ =

k
∑

j=1

ηjζ. Since

lim
t→0

∫

Brj (zj)
u(x, t)(ηjζ)(x)dx =

∫

Brj (zj)
(ηjζ)(x)dµj(x) ∀j = 1, ..., k,

there exists a positive Radon measure µ on R(u) satisfying (1.24). Notice also that
u ∈ L∞(0, T ;L1(G)) for any G ⊂ G ⊂ R(u). �

The main problem is to analyse the behaviour of u on the singular set S(u).

4.2 The Keller-Osserman condition holds

If the Keller-Osserman condition holds, the existence of an initial trace of arbitrary
positive solutions of (1.1) is based upon a dichotomy in the behaviour of those
solutions near t = 0.

Lemma 4.2 Assume u is a positive solution of (1.1) in QT and z ∈ S(u). Suppose
that at least one of the following sets of conditions holds.

(i) There exists an open neighborhood G of z such that u ∈ L1(QG
T ).

(ii) f is nondecreasing and (1.12) holds.

Then, for every open relative neighborhood G′ of z,

lim
t→0

∫

G′

u(x, t)dx = ∞. (4.4)

Proof. First, we assume that (i) holds and let ζ ∈ C2
c (G), ζ ≥ 0. Since z ∈ S(u),

then for every open relative neighborhood G′ of z, there holds

∫ T

0

∫

G′

f(u)dx dt = ∞. (4.5)
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Since there exists

lim
t→0

∫ T

t

∫

G′

u∆ζdx dt = L ∈ R,

it follows from (4.3) that

∫

G′

u(x, t)ζ(x)dx =

∫ T

t

∫

G′

f(u)ζdxds+O(1), (4.6)

which implies (4.4).

Next we assume that (1.12) holds and u /∈ L1(QG
T ) for every relative neighborhood

G of z. If there exists an open neighborhood G ⊂ Ω of z such that (4.4) does not
hold, there exists a sequence {tn} decreasing to 0 and 0 ≤M <∞ such that

sup
tn

∫

G
u(x, tn)dx =M. (4.7)

Furthermore, we can always replace G by an open ball BR(z) ⊂ G. Thus (4.7) holds
with G replaced by BR(z). Let w := wR be the maximal solution of







−∆w + f(w) = 0 in BR(z)

lim
|x−z|→R

w(x) = ∞. (4.8)

Let v := vn be the solution of







∂tv −∆v = 0 in BR(z)× (tn,∞)

v = 0 in ∂BR(z) × (tn,∞)
v(., tn) = u(., tn) in BR(z).

(4.9)

Since vn ≥ 0, f(wR + vn) ≥ f(wR), and wR + vn is a supersolution of (1.1) in
BR(z)× (tn, T ). It dominates u on ∂BR(z)× (tn, T ) and at t = tn, thus u ≤ wR+vn
in BR(z)× (tn, T ). We can assume that u(., tn) → ν for some positive and bounded
measure ν on BR(z). Therefore

u(x, t) ≤ v(x, t) + wR(x) in Q
BR(z)
T (4.10)

where v is the solution of










∂tv −∆v = 0 in Q
BR(z)
∞

v = 0 in ∂BR(z)× (0,∞)
v(., 0) = ν in D′(BR(z)).

(4.11)

Since v ∈ L1(Q
BR(z)
T ) and wR is uniformly bounded in any ball BR′(z) for 0 < R′ <

R, we conclude that u ∈ L1(Q
BR′ (z)
T ), which is a contradiction. �

27



Definition 4.3 Assume f is nondecreasing and satisfies (1.12). Let u ∈ C2,1(QT )
be a positive solution of (1.1) in QT . We say that u possesses an initial trace with
regular part µ ∈ M+(R(u)) and singular part S(u) = R

N \ R(u) if

(i) For any ζ ∈ Cc(R(u)),

lim
t→0

∫

R(u)
u(x, t)ζ(x)dx =

∫

R(u)
ζ(x)dµ(x). (4.12)

(ii) For any open set G ⊂ R
N such that G ∩ S(u) 6= ∅

lim
t→0

∫

G
u(x, t)dx = ∞. (4.13)

Proof of Theorem 1.11

The set R(u) and the measure µ ∈ M+(R(u)) are defined by Definition 1.10
thanks to Proposition 1.9. Because (1.12) holds, S(u) = Ω \ R(u) inherits the
property (ii) in Definition 4.3 because of Lemma 4.2 (ii). �

If Ω is a bounded domain with a C2 boundary and µ ∈ M
b
+(Ω), we denote by

uµ the solution of







∂tu−∆u+ f(u) = 0 in QΩ
∞

u = 0 in ∂Ω× (0,∞)
u(., 0) = µ in D′(Ω).

(4.14)

We recall the following stability result proved in [6, Th 1.1].

Lemma 4.4 Let Ω be a bounded domain with a C2 boundary. Assume f is non-
decreasing and satisfies (1.8). Then for any µ ∈ M

b(Ω) problem (4.14) admits a
unique solution uµ. Moreover, if {µn} ⊂ M

b(Ω) converges weakly to µ ∈ M
b(Ω)

then uµn → uµ locally uniformly in Ω× (0,∞) and in L1(QΩ
T ), and f(uµn) → f(uµ)

in L1(QΩ
T ), for every T > 0.

Remark. The result remains true if Ω is unbounded, with a C2 compact (possibly
empty) boundary and the µn have their support in a fixed compact set. In such a
case uµn(x, t) → 0 when |x| → ∞, uniformly with respect to n and t since

|uµn(x, t)| ≤
1

(4πt)N/2

∫

RN

e−|x−y|2/4td |µn| (y) ∀(x, t) ∈ Q∞. (4.15)

By Lemma 4.4 and the remark hereafter, for every y ∈ Ω and k > 0, there exists
a unique solution vy,k,Ω := v to (4.14) with µ = kδ0. By comparison principle (see
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[6, Prop 1.2]) vy,k,Ω is positive, increases as k increases and depends continuously
on y. Note that if Ω = R

N , vy,k,RN (x, t) := vy,k(x, t) = uk(|x− y| , t); furthermore,
if f satisfies (1.12), we recall that U = limk→∞ uk is the minimal solution of (1.1)
in Q∞ with initial trace ({0}, 0).

Proposition 4.5 Assume f is nondecreasing and satisfies (1.8) and (1.12). Let
u ∈ C2,1(Q∞) is a positive solution of (1.1) in Q∞ with initial trace (S, µ). Then
for every y ∈ S,

Uy(x, t) := U(x− y, t) ≤ u(x, t) (4.16)

in Q∞.

Proof. By translation we may suppose that y = 0. Since 0 ∈ S(u), for any η > 0
small enough

lim
t→0

∫

Bη

u(x, t)dx = ∞.

For ǫ > 0, denote Mǫ,η =

∫

Bη

u(x, ǫ)dx. For any m > mη = inf
σ>0

Mσ,η there exists

ǫ = ǫ(m, η) such that m = Mǫ,η and lim
η→0

ǫ(m, η) = 0. Let vη be the solution of the

problem
{

∂tvη −∆vη + f(vη) = 0 in Q∞
vη(x, 0) = u(x, ǫ)χBη in R

N

where χBη is the characteristic function of Bη. By the maximum principle vη ≤ u
in R

N × (ǫ,∞). By Lemma 4.4 and the remark after vη converges to v0,m when η
goes to zero. Letting m go to infinity yields (4.16). �

Corollary 4.6 Under the assumption of Proposition 4.5, there exists a minimal
positive solution US of (1.1) in Q∞ with initial trace (S, 0) in the sense that

US(x, t) ≤ u(x, t) ∀(x, t) ∈ Q∞, (4.17)

for all positive solution u ∈ C2,1(Q∞) of (1.1) with initial trace (S(u), µ).

Proof. If we set ŨS = sup{Uy : y ∈ S}, then ŨS is a subsolution of (1.1). If u is a
positive solution of (1.1) with initial trace (S, µ), then u ≥ ŨS by Proposition 4.5.
Therefore u is larger than the smallest solution of (1.1) in Q∞ which is above ŨS .
We denote this minimal solution by US . �

If S contains some ball BR we have a more precise result.
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Proposition 4.7 Let u be a positive solution of (1.1) in Q∞ with initial trace (S, µ).
We assume that S has a non-empty interior, and for R > 0, we denote by intR(S)
the set of y ∈ S such that BR(y) ⊂ S. Then for any R′ ∈ (0, R) there holds

lim
t→0

u(x, t)

φ∞(t)
= 1 (4.18)

uniformly for x ∈ BR′(y) and y ∈ intR(S).

Proof. Let y ∈ intR(S) and w(x, t) = u(x, t) + wR(x− y) where wR is the maximal

solution of (2.18) . Then w is a supersolution of (1.1) in Q
BR(y)
∞ and limt→0 w(x, t) =

∞, uniformly with respect to x ∈ BR(y), by (4.16). Then, for any ǫ > 0, there exists

tǫ > 0 such that w(x, t) ≥ φ∞(ǫ) in Q
BR(y)
tǫ . Since φ∞(t + ǫ) remains bounded on

∂BR(y)× (0,∞), it follows by the maximum principle that

w(x, t) ≥ φ∞(t+ ǫ) ∀(x, t) ∈ QBR(y)
∞ .

Letting ǫ → 0 and using the fact that wR(x− y) remains uniformly bounded when
|x− y| ≤ R′, we derive

u(x, t) ≥ φ∞(t)−KR′ ∀(x, t) ∈ Q
B′

R(y)
∞ . (4.19)

where KR′ = max{wR(x− y) : |x− y| ≤ R′}. Combining this estimate with (2.30 )
yields to (4.18 ). �

Proposition 4.8 Assume f is nondecreasing and satisfies (1.8) and (1.12). Let
{un} be a sequence of positive solutions of (1.1) in Q∞ with initial trace (S(un), µn)
such that un → u locally uniformly in Q∞ and let A be an open subset of R(un) :=
R
N \ S(un). Then u is a positive solution of (1.1) in Q∞, with initial trace denoted

by trRN (u) = (S, µ). Furthermore, if µn(A) remains uniformly bounded, then A ⊂
R := R

N \ S and χ
A
µn → χ

A
µ weakly. Conversely, if A ⊂ R(u), then µn(K)

remains bounded independently of n, for every compact set K ⊂ A.

Proof. The fact that u is a positive solution of (1.1) in Q∞ is standard by the weak
formulation of the equation. Assume now that A ∩ S 6= ∅. Let z ∈ A ∩ S and

R > 0 such that BR(z) ⊂ A. By convexity, un is bounded from above in Q
BR(z)
∞ by

vn,z +wR, where vn,z satisfies











∂tv −∆v + f(v) = 0 in Q
BR(z)
∞

v = 0 in ∂BR(z)× (0,∞)
v(., 0) = χ

BR(z)
µn in BR(z),

(4.20)
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and wR is the maximal solution of (4.8). We can assume that, up to a subsequence,
χ

BR(z)
µnk

→ µz ∈ M
b
+(BR(z)) weakly, thus vnk,z → vz where vz is the solution of







∂tv −∆v + f(v) = 0 in Q
BR(z)
∞

v = 0 in ∂BR(z)× (0,∞)
v(., 0) = µz in BR(z),

(4.21)

Therefore
u ≤ vz + wR in QBR(z)

∞ . (4.22)

By Lemma 4.4, it implies that u ∈ L1(Q
BR′ (z)
T ) for any 0 < R′ < R. Furthermore, if

(1.8) is satisfied, then for any positive constant k, s 7→ sN/2f(s−N/2 + k) ∈ L1(0, 1),

thus if v is such that f(v) ∈ L1(Q
BR′ (z)
T ), there holds f(v + k) ∈ L1(Q

BR′ (z)
T ). In

particular, since f(vz) ∈ L1(Q
BR′ (z)
T ), and if we take k = max{wR(x) : x ∈ BR′(z)},

we derive that f(u) ∈ L1(Q
BR′ (z)
T ), and therefore z ∈ R, which is a contradiction;

thus A ⊂ R. Next, there exist a subsequence {nk} and a bounded positive measure
µ̃, with support in A such that χ

A
µnk

→ µ̃ weakly and suppose BR(z) ⊂ A. Since

unk
≤ vnk,z+k and f(unk

) ≤ f(vnk,z+k) in Q
BR′ (z)
T and vnk,z+k and f(vnk,z+k) are

uniformly integrable in Q
BR′ (z)
T , it follows that unk

and f(unk,z) inherit this property.
Therefore, if ζ ∈ C2

c (BR(z)) we can assume that it vanishes outside BR′(z). Because

∫

BR(z)
ζ(x)dµnk

(x) =

∫

BR(z)
unk

(x, t)ζ(x)dx +

∫ t

0

∫

BR(z)
(−unk

∆ζ + f(unk
)ζ) dxds,

(4.23)
we derive from Vitali’s convergence theorem

∫

BR(z)
ζ(x)dµ̃(x) =

∫

BR(z)
u(x, t)ζ(x)dx+

∫ t

0

∫

BR(z)
(−u∆ζ + f(u)ζ) dxds. (4.24)

This implies that χ
BR(z)

µ̃ = χ
BR(z)

µ and, by a partition of unity, that µ̃ = χAµ.

Assume now that K ⊂ R is compact. If µn(K) is unbounded and up to a subse-
quence still denoted by {n}, there exists a point y ∈ K such that for any neigh-
borhood O of y, O ⊂ A, µn(O) → ∞ as n → ∞. We can take O = Br(y) and
put Mn,r = µn(Br(y)). If m ∈ N

∗, there exists an integer n = n(m, r) such that
m = Mn,r, and limr→0 n(m, r) = ∞. Let r0 > r such that Br0(y) ⊂ A, and wr be
the solution of











∂tw −∆w + f(w) = 0 in Q
Br0 (y)∞

w = 0 in ∂Br0(y)× (0,∞)
w(., 0) = χ

Br(y)
µn in Br0(y).

(4.25)
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By the comparison principle, wr ≤ un in Q
Br0(y)∞ . Since χ

Br(y)
µn → mδy as r → 0

and n → ∞, we derive uy,m,Br0(y)
≤ u from Lemma 4.4 and the remark hereafter.

Since m is arbitrary, uy,∞,Br0(y)
≤ u. This implies that y ∈ S, a contradiction.

�

If A is an open subset of Ω and ν ∈ M+(A), we define an extension ν of ν to Ω
by

ν(E) = inf
E⊆O

ν(O ∩A) (4.26)

for every Borel set E ⊂ Ω where the infimum is taken over the open subsets O; ν is
an outer regular Borel measure on Ω and ν = χAν.

The following result which shows the existence of a minimal solution of (1.1)
with a given initial trace in M+(A) for any open subset A in R

N is a straightforward
adaptation of [5, Lemma 3.3].

Proposition 4.9 Assume f is nondecreasing and satisfies (1.8), (1.12) and (C2).

(i) Let A be an open subset of R
N and let ν ∈ M+(A) with associated extension

ν. Then there exists a positive solution of (1.1) in Q∞ denoted by uν satisfying
TrRN (uν) = ν and such that uν ≤ v for every positive solution v of (1.1) in Q∞
such that trRN (v) = (S, µ) and χ

A
µ ≥ ν.

(ii) Let Ω ⊂ R
N be a bounded domain with a C2 boundary and un be the solution of

problem






∂tun −∆un + f(un) = 0 in QΩ
T

un = n on ∂Ω× (0,∞)
un(., 0) = n in Ω.

(4.27)

Denote U∞,Ω := lim
n→∞

un. Then U∞,Ω is the maximal solution of (1.1) in QΩ
∞ in the

sense that the following relation holds in QΩ
T for every positive solution v of (1.1)

U∞,Ω ≥ v. (4.28)

Taking A = R := R
N \ S, we obtain the existence of a minimal positive solution

of (1.1) with a given positive Radon measure µ ∈ M+(R) as the regular part of the
initial trace.

Corollary 4.10 Let S be a closed subset of R
N , R = R

N \ S and µ ∈ M+(R).
Then there exists a positive solution uµ of (1.1) such that TrRN (uµ) = µ and uµ ≤ v
for every positive solution v of (1.1) in Q∞ such that trRN (v) = (S, µ).

As a counterpart of Theorem 1.11 we have the following existence theorem.
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Proof of Theorem 1.12

Step 1: Construction of a minimal solution. Let uS and uµ the minimal solution
constructed in Corollary 4.6 and Corollary 4.10. Then ǔS,µ := sup{uS , uµ} is a
subsolution of (1.1) in Q∞ while ûS,µ := uS + uµ is a supersolution. Furthermore
ǔS,µ ≤ ûS,µ. Therefore the set of solutions u in Q∞ such that ũS,µ ≤ u ≤ ûS,µ is not
empty and we denote by uS,µ the smallest solution larger than ǔS,µ; it is a solution
with initial trace (S, µ). If u is any other positive solution with the same initial
trace, it is larger than uS and uµ by Corollary 4.6 and Corollary 4.10. Therefore it
is larger than ǔS,µ and consequently larger than uS,µ.
Step 2: Construction of the maximal solution. The proof is somewhat similar to the
one on [5, Th 3.4], but we give it for the sake of completeness. We denote, for δ > 0,

Sδ := {x ∈ R
N : dist(x,S) ≤ δ} and Rδ := R

N \ Sδ.

and let µδ be the measure given by

µδ(E) = µ(Rδ ∩ E) ∀E ⊂ R
N , E Borel.

We denote by uSδ a solution of (1.1) in Q∞ with initial trace (Sδ, 0): a solution is
easily constructed as the limit when R, k → ∞ of the solution v = vk,R of

{

∂tv −∆v + f(v) = 0 in Q∞
v(., 0) = kχ

(BR∩Sδ)∪(BR∩B
c
R−δ)

(4.29)

By Proposition 4.7, there holds, for any 0 < δ′ < δ,

lim
t→0

uSδ(x, t)

φ∞(t)
= 1 uniformly on Sδ′ (4.30)

Let uµδ
be the solution of of (1.1 ) in Q∞ with initial trace (∅, µδ). This solution

is constructed by approximation, as the limit, when R → ∞, of the solution u =
uχ

BR
µδ

of
{

∂tu−∆u+ f(u) = 0 in Q∞
u(., 0) = χ

BR
µδ in R

N .
(4.31)

For τ > 0, let uδ,τ be the solution of (1.1) in Q∞ with initial data mδ,τ defined by

mδ,τ (x) =

{

φ∞(τ) if x ∈ Sδ

uµδ
(x, τ) if x ∈ Rδ.

If u is a positive solution of (1.1) with initial trace (S, µ) then u(., τ) ≤ mδ,τ in Sδ

and u(., τ) ≥ mδ,τ in Rδ by Proposition 4.9. Therefore

lim
τ→0

(u(., τ) −mδ,τ (.))+ = 0
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in the weak sense of measures. Furthermore, this convergence does not depend on u,
but only on Sδ and µδ. The set of functions {uδ,τ}τ>0 is locally uniformly bounded
in Q∞. By the regularity theory for parabolic equations, there exists a subsequence
{τk} and a positive solution u∗δ of (1.1) in Q∞ such that uδ,τk → u∗δ locally uniformly
in Q∞. By Proposition 4.8 and Proposition 4.9, trRN (u∗δ) = (Sδ, µδ). Let ωδ,τ be the
solution of (1.1) in Q∞ with initial data (u(., τ)−mδ,τ (.))+ (it is constructed in the
same way as uµ in Proposition 4.9 -(i)). By Theorem 1.8-(ii), limτ→0 ωδ,τ = 0, locally

uniformly. Since u ≤ uδ,τ +ωδ,τ in (τ,∞)×R
N , we obtain u ≤ u∗δ . If 0 < δ′ < δ, we

can compare similarly uδ,τ with the solution uδ′,τ of (1.1) with initial data

mδ′,τ (x) =

{

φ∞(τ) if x ∈ Sδ′

uµδ′
(x, τ) if x ∈ Rδ′ .

If u∗δ′ is the limit of any sequence {uδ′,τk′}, it satisfies 0 < u∗δ′ ≤ u∗δ and has initial

trace (Sδ′ , µδ′). If we take in particular δ = δn = 2−n, we construct a decreasing
sequence of positive solutions {u∗2−n} of (1.1) inQ∞, with trRN (u∗2−n) = (S2−n

, µ2−n),
satisfying

u ≤ u∗2−n in Q∞.

Clearly the limit uS,µ of the sequence {u∗2−n} is a positive solution of (1.1) in Q∞
with initial trace (S, µ) and is independent of u. It is the maximal solution of the
equation with this initial trace. �

Remark. When f(r) = |r|q−1r with 1 < q < 1+2/N , precise expansion of u∞δ(x, t),
when t→ 0 allows to prove uniqueness. Even when f(r) = r lnα(r + 1) with α > 2,
uniqueness is not known. The first step would be to prove that uniqueness holds
if trΩ(u) = ({a}, 0) for some a ∈ Ω. However, if S = ∅, uniqueness holds from
Theorem 1.8-(ii).

4.3 The Keller-Osserman condition does not hold

In this section we assume that (1.12) does not hold but (2.1) is always satisfied.

Lemma 4.11 Assume (1.10), (1.16), (C1) and (C3) are satisfied. If u is a positive
solution of (1.1) in Q∞ which satisfies

lim sup
t→0

∫

G
u(x, t)dx = ∞, (4.32)

for some bounded open subset G ⊂ R
N , then u(x, t) ≥ φ∞(t).

Proof. By assumpion, there exists a sequence {tn} decreasing to 0 such that

lim
n→∞

∫

G
u(x, tn)dx = ∞. (4.33)
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If (4.32), we can construct a decreasing sequence of open subsets Gk ⊂ G such that
Gk ⊂ Gk−1, diam(Gk) = ǫk → 0 when k → ∞, and

lim
n→∞

∫

Gk

u(x, tn)dx = ∞ ∀k ∈ N. (4.34)

Furthermore there exists a unique a ∈ ∩kGk. We set

∫

Gk

u(x, tn)dx =Mn,k.

Since lim
n→∞

Mn,k = ∞, we claim that for any m > 0 and any k, there exists n =

n(k) ∈ N such that
∫

Gk

u(x, tn(k))dx ≥ m. (4.35)

By induction, we define n(1) as the smallest integer n such that Mn,1 ≥ m. This is
always possible. Then we define n(2) as the smallest integer larger than n(1) such
that Mn,2 ≥ m. By induction, n(k) is the smallest integer n larger than n(k − 1)
such that Mn,k ≥ m. Next, for any k, there exists ℓ = ℓ(k) such that

∫

Gk

inf{u(x, tn(k)); ℓ}dx = m (4.36)

and we set
Vk(x) = inf{u(x, tn(k)); ℓ}χGk

(x).

Let vk = v be the unique bounded solution of

{

∂tv −∆v + f(v) = 0 in Q∞
v(., 0) = Vk in R

N .
(4.37)

Since v(x, 0) ≤ u(x, tn(k)), we derive

u(x, t+ tn(k)) ≥ vk(x, t) ∀(x, t) ∈ Q∞. (4.38)

When k → ∞, Vk → mδa, thus vk → umδa by Lemma 4.4. Therefore u ≥ umδa .
Since m is arbitrary and umδa → φ∞ when m → ∞ by Theorem 1.3, it follows that
u ≥ φ∞. �

Lemma 4.12 Assume (1.15), (C1) and (C3) are satisfied. There exists no positive
solution u of (1.1) in Q∞ which satisfies (4.32) for some bounded open subset G ⊂
R
N .
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Proof. If we assume that such a u exists, we proceed as in the proof of the pre-
vious lemma. Since Lemma 4.4 holds, we derive that u ≥ umδa for any m. Since
lim

m→∞
umδa(x, t) = ∞ for all (x, t) ∈ Q∞, we are led to a contradiction. �

Thanks to these results, we can characterize the initial trace of positive solutions
of (1.1) when the Keller-Osserman condition does not hold.

Proof of Theorem 1.13

If there exists some open subset G of RN with the property (4.32), then u ≥ φ∞
and the initial trace of u is the Borel measure ν∞. Next we assume that for any
bounded open subset G of RN there holds

lim sup
t→0

∫

G
u(x, t)dx <∞. (4.39)

If S(u) 6= ∅, there exist z ∈ R
N and an bounded open neighborhood G of z such

that
∫ T

0

∫

G
f(u)dxdxt = ∞.

By (4.39), u ∈ L∞(0, T ;L1(G)) ⊂ L1(QG
T ). Then, by Lemma 4.2, (4.4) holds, which

contradict (4.39). Thus S(u) = ∅ and R(u) = R
N . It follows from Proposition 1.9

that there exists a positive Radon measure µ such that

lim
t→0

∫

RN

u(x, t)ζ(x)dx =

∫

RN

ζ(x)dµ(x) ∀ζ ∈ Cc(R
N ). (4.40)

�

Because of the lack of uniqueness from Theorem 1.6 it is difficult to give a
complete characterization of admissible initial data for solutions of (1.1) under the
assumptions of Theorem 1.13. However, we have the result as in Proposition 1.14.

Proof of Proposition 1.14

We first notice that max{φ∞(t);wb(|x|)} is a subsolution of (1.1) which is domi-
nated by the supersolution φ∞(t)+wb(|x|). The construction is standard: for τ > 0
we set

ψ(x, τ) =
1

2
(max{φ∞(t);wb(|x|)}+ φ∞(t) + wb(|x|)) .

There exists a function u = uτ ∈ C(Q∞) solution of (1.1) in Q∞ satisfying uτ (., 0) =
ψ(., τ). Furthermore

max{φ∞(t+ τ);wb(|x|)} ≤ uτ (x, t) ≤ φ∞(t+ τ) +wb(|x|) ∀(x, t) ∈ Q∞. (4.41)
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By the parabolic equation regularity theory, the set {uτ}τ>0 is locally equicontinuous
in Q∞. Thus there exist a subsequence {τn} and u ∈ C(Q∞) such that uτn → u
on any compact subset of Q∞. Clearly u is a weak, thus a strong solutions of (1.1)
and it satisfies (1.28). Since any solution u with initial trace ν∞ dominates φ∞ by
Lemma 4.11, it follows that φ∞ is the minimal one. �

Proof of Theorem 1.15

As in the proof of Theorem 1.13 and because of Lemma 4.12, S(u) = ∅. Therefore
R(u) = R

N and the proof follows from Proposition 1.9. �

Remark. Under the assumptions of Theorem 1.13, it is clear, from the proof of
Proposition 3.1, that for any 0 < a < b and any initial data u0 ∈ C(RN ) satisfying

wa(x) ≤ u0(x) ≤ wb(x) ∀x ∈ R
N

there exists a solution u ∈ C(Q∞) of (1.1) in Q∞ satisfying u(., 0) = u0 and

wa(x) ≤ u(x, t) ≤ wb(x) ∀(x, t) ∈ Q∞.

We conjecture that for any positive measure µ on R
N which satisfies, for some b > 0,

∫

BR

dµ(x) ≤
∫

BR

wb(x)dx ∀R > 0 (4.42)

there exists a positive solution u of (1.1) in Q∞ with initial trace µ. Another
interesting open problem is to see if there exist local solutions in QT with an initial
trace µ satisfying

lim
R→∞

∫

BR

dµ(x)

∫

BR

wb(x)dx
= ∞ ∀b > 0. (4.43)
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