Action minimizing properties and distances on the group of Hamiltonian diffeomorphisms - Archive ouverte HAL
Article Dans Une Revue Geometry and Topology Année : 2010

Action minimizing properties and distances on the group of Hamiltonian diffeomorphisms

Résumé

In this article we prove that for a smooth fiberwise convex Hamiltonian, the asymptotic Hofer distance from the identity gives a strict upper bound to the value at $0$ of Mather's $\beta$ function, thus providing a negative answer to a question asked by K. Siburg in \cite{Siburg1998}. However, we show that equality holds if one considers the asymptotic distance defined in \cite{Viterbo1992}.
Fichier principal
Vignette du fichier
S-V29.pdf (437.76 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00458323 , version 1 (20-02-2010)

Identifiants

Citer

Alfonso Sorrentino, Claude Viterbo. Action minimizing properties and distances on the group of Hamiltonian diffeomorphisms. Geometry and Topology, 2010, pp.2383-2403. ⟨hal-00458323⟩
538 Consultations
187 Téléchargements

Altmetric

Partager

More