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1 Introduction

The relationship between Aubry-Mather theory and the new tools of symplectic
topology has attracted quite a bit of attention over the last years. These two
approaches correspond to two different ways of looking at Hamiltonian systems.
While the former investigates the dynamics of the system in the phase space, the
latter takes a more global look at the topology of the path that the Hamiltonian
flow describes in the group of Hamiltonian diffeomorphisms. Trying to relate and
combine these “internal” and “external” information is a very intriguing task.

In this article we shall concentrate on the relation between the action minimiz-
ing properties of the flow of a convex Hamiltonian and its “asymptotic distance”
from the identity.

Given a Tonelli Hamiltonian H (see section 3 for a precise definition) and its
corresponding Lagrangian L (obtained by Legendre duality), Aubry-Mather the-
ory associates the so-called β-function (or effective Lagrangian). Roughly speak-
ing, the value of such a function represents the minimal average Lagrangian action
needed to carry out motions with a prescribed “rotation vector”. The Legendre
dual of the β-function is what is called the α-function (or effective Hamiltonian).
See section 3 for precise definitions.

On the other hand the corresponding Hamiltonian flow ϕt
H determines a curve

in the group of Hamiltonian diffeomorphisms. Recall that there are several nat-
ural metrics that can be defined on this group, in particular the so-called Hofer
distance [10] and γ-distance1 [17] (see section 2).

Studying the connection between these objects arises quite naturally and has
indeed been studied by several authors in the last years.

One question, for instance, concerns the relationship between βH(0), associ-
ated to a Tonelli Hamiltonian H , and the asymptotic Hofer distance from the
identity of its time-one flow map ϕ1

H . Observe that the definitions need to be
adjusted since ϕ1

H is not compactly supported, while the Hofer distance is only
defined for compactly supported Hamiltonians.

In [15] K. Siburg proves, in the case of Hamiltonian diffeomorphisms on the
cotangent disc bundle generated by a convex Hamiltonian H , that the asymptotic
Hofer distance yields an upper bound for βH(0) (see Proposition 2) and asks
whether or not equality holds. In this paper we show that Siburg’s question has
a negative answer (Corollary 2), by constructing examples of convex Hamiltonian
diffeomorphisms for which the asymptotic Hofer distance from the identity is

1Sometimes called Viterbo distance.
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strictly greater than the asymptotic γ-distance (Theorem 2). However, Siburg’s
question has a positive answer, provided the asymptotic Hofer distance is replaced
by the asymptotic γ-distance (Proposition 2). Moreover, we extend these results
to the case of general Hamiltonian diffeomorphisms generated by autonomous
Tonelli Hamiltonians (Theorem 1 and Corollary 1).

Observe that Corollary 2 is also stated in [7]. However, as the author kindly
confirmed to us, there is a gap in the proof of [7, Proposition 7]. Although our
proof goes along completely different lines, we are grateful to X. Cui for drawing
our attention to this problem.

2 Metric structures on the group of Hamilto-

nian diffeomorphisms

We first define the group of Hamiltonian diffeomorphims and two metrics on this
group: Hofer distance and γ-distance.
Let ‖ · ‖ denote the standard metric on the n-dimensional torus T

n ≃ R
n/Zn

and ω = −dλ the canonical symplectic structure on T∗
T
n, where λ =

∑n

j=1 pjdqj
is the Liouville form on T∗

T
n. We denote by H0 the set of admissible time-

dependent Hamiltonians H ∈ C2(T∗
T
n × T), such that Ht(q, p) := H(q, p, t) has

compact support. For each H ∈ H0 we consider the corresponding Hamiltonian
flow ϕt

H and denote by ϕH := ϕ1
H its time-one map. The group of Hamiltonian

diffeomorphisms Ham0(T
∗
T
n) := Ham0(T

∗
T
n, ω) is the set of all Hamiltonian

diffeomorphisms ϕ : T∗
T
n −→ T∗

T
n that are obtained as time-one maps of

elements in H0, i.e. ϕ = ϕH for some H ∈ H0.
We shall now define the Hofer and γ-distances for elements in Ham0(T

∗
T
n).

2.1 The Hofer distance

This first metric structure on the group of compactly supported Hamiltonian
diffeomorphisms was defined by Hofer (see [10]). Consider a path in the group
of compactly supported Hamiltonian diffeomorphisms, given by an admissible
Hamiltonian H . One first defines the lenght ℓ(H) of this Hamiltonian path, by
setting

ℓ(H) :=

∫

T

OscHt dt,

where OscHt := maxT∗Tn Ht −minT∗Tn Ht denotes the oscillation of Ht.
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Definition 1 (Hofer distance). The Hofer distance from the identity (or en-
ergy) of an element ϕ ∈ Ham0(T

∗
T
n) is given by

dH(id, ϕ) := inf
{
ℓ(H) : H ∈ H0 and ϕ = ϕH

}
.

This extends to a distance on Ham0(T
∗
T
n): if ϕ, ψ ∈ Ham0(T

∗
T
n), then dH(ϕ, ψ) :=

dH(id, ψ ◦ ϕ−1).

It is easy to verify that if H,K ∈ H0, then

dH(ϕ1
H , ϕ

1
K) ≤ ‖H −K‖C0 .

Observe that this definition only considers the flow of a given Hamiltonian
at time t = 1. In the study of the dynamics, however, one is interested in the
long time behaviour of the system and it would be more relevant to get global
information, such as, for instance, the asymptotic Hofer distance from the identity
introduced by Bialy and Polterovich in [2].

Definition 2 (Asymptotic Hofer distance). Let ϕ be a Hamiltonian diffeo-
morphism in Ham0(T

∗
T
n). The asymptotic Hofer distance from the identity is:

dH∞(id, ϕ) := lim
k→+∞

dH(id, ϕk)

k
.

It follows from the triangle inequality that the above limit exists and that dH∞ ≤
dH .

2.2 The γ-distance

One can also introduce another metric on Ham0(T
∗
T
n), commonly referred to as

γ-distance. First of all, let us recall the following construction (see [17] for more
details). Let L0 denote the set of Lagrangian submanifolds Λ of T∗

T
n, which are

Hamiltonianly isotopic to the zero section OTn , i.e. there exists a Hamiltonian
isotopy ϕt such that Λ = ϕ1(OTn). Consider Λ ∈ L0 and let SΛ : Tn × R

k −→
R be a generating function quadratic at infinity (GFQI) for Λ (see [17] for the
definition). Since Λ is Hamiltonianly isotopic to OTn, then SΛ is unique up to
some elementary operations. Moreover, if we denote by Sλ

Λ := {(q; ξ) ∈ T
n ×R

k :
SΛ(q; ξ) ≤ λ}, then for sufficiently large c ∈ R we have that H∗(Sc

Λ, S
−c
Λ ) ≃

H∗(Tn) ⊗ H∗(D−, ∂D−), where D− is the unit disc of the negative eigenspace
of the quadratic form B associated to SΛ. Therefore to each cohomology class
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α ∈ H∗(Tn) \ {0}, one can associate the image α⊗ T (T is a chosen generator of
H∗(D−, ∂D−) ≃ Z) and, by min-max methods, a critical level c(α, SΛ) (see [17,
p. 690-693] for more details).

Let us now consider ϕ ∈ Ham0(T
∗
T
n). Recall that its graph

Γ(ϕ) = {(z, ϕ(z)) : z ∈ T∗
T
n}

is a Lagrangian submanifold of T∗
T
n × T∗Tn, where T∗Tn denotes T∗

T
n with

the sympectic form −ω (see for example [5]). Since T∗
T
n × T∗Tn is covered by

T∗(∆T∗Tn), where ∆T∗Tn is the diagonal, we may lift Γ(ϕ) to Γ̃(ϕ), which is still a
Lagrangian submanifold in T∗(∆T∗Tn). Moreover, since ϕ has compact support,

we can compactify both Γ̃(ϕ) and ∆T∗Tn and we obtain a Lagrangian submanifold
Γ(ϕ) in T∗(Sn × T

n). In [17, p. 697 and p. 706] the second author defined the
following distance from the identity.

Definition 3 (γ-distance). Let ϕ ∈ Ham0(T
∗
T
n). The γ-distance of ϕ from

the identity is given by:

γ(id, ϕ) := c(µTn ⊗ µSn,Γ(ϕ))− c(1⊗ 1,Γ(ϕ)).

In particular, this can be easily extended to a distance on the all group: if
ϕ, ψ ∈ Ham0(T

∗
T
n), then γ(ϕ, ψ) := γ(id, ψ ◦ ϕ−1).

We also define
c+(ϕ) := c(µTn ⊗ µSn,Γ(ϕ))

and
c−(ϕ) := c(1⊗ 1,Γ(ϕ))

so that γ(id, ϕ) = c+(ϕ)− c−(ϕ).

It is possible to show again that γ(ϕ1
H , ϕ

1
K) ≤ ‖H −K‖C0 for all H,K ∈ H0,

and more precisely that γ(ϕ1
H , ϕ

1
K) ≤ dH(ϕ1

H , ϕ
1
K) (see Proposition 1).

Analogously to what we have already seen for Hofer distance, one can intro-
duce the asymptotic γ-distance from the identity:

Definition 4 (Asymptotic γ-distance). Let ϕ be a Hamiltonian diffeomor-
phism in Ham0(T

∗
T
n). The asymptotic γ-distance from the identity is:

γ∞(id, ϕ) := lim
k→+∞

γ(id, ϕk)

k
.

Similarly,

c±,∞(ϕ) = lim
k→+∞

c±(ϕ
k)

k
.
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Proposition 1. For all ϕ ∈ Ham0(T
∗
T
n), γ(id, ϕ) ≤ dH(id, ϕ). In particular,

γ∞(id, ϕ) ≤ dH∞(id, ϕ).

This is an immediate consequence of [17, Proposition 4.6] and it was explicitly
stated for example in [18, Proposition 2.15] or in [11, Proposition 1.52].

3 Action minimizing properties of convex Hamil-

tonians

In this section we want to recall some notions of Mather’s theory of minimal
action. In order to do this, we need to restrict our analysis to a special class of
Hamiltonians H : T∗

T
n ×T −→ R, which are C2, strictly convex and superlinear

in the fibers and have complete flows. These Hamiltonians, which are also called
Tonelli Hamiltonians, play an important role in the study of classical mechanics
and provide the setting in which Mather’s theory and Fathi’s Weak KAM theory
have been developed (see for instance [14, 9]).

Let H be a Tonelli Hamiltonian and consider the associated Lagrangian L :
TTn × T −→ R, which is defined by Legendre duality by the formula:

L(q, v, t) = sup{〈p, v〉 −H(q, p, t) | p ∈ R
n}.

Recall that the associated Euler-Lagrange flow ϕt
L is obtained as solution of the

equation d
dt

∂L
∂v
(q, v, t) = ∂L

∂q
(q, v, t) and it is conjugated, via the Legendre trans-

form (q, v) 7−→ (q, ∂L
∂v
(q, v, t)), to the Hamiltonian flow ϕt

H . Let µ be a prob-
ability measure on TTn × T, which is invariant under the Euler-Lagrange flow
(i.e. (ϕt

L)∗µ = µ). We define its average action as

AL(µ) :=

∫

TTn×T

L(q, v, t) dµ .

Let us denote by M(L) the space of invariant probability measures on TTn × T,
with finite average action. Given any µ ∈ M(L) we can define its rotation vector
or Schwartzman’s asymptotic cycle as the unique ρ(µ) ∈ H1(T

n;R) that satisfies
∫

TTn×T

η(q, t) · (v, 1) dµ = 〈ρ(µ), [η]Tn〉+ [η]T

for any closed 1-form η on T
n × T, where [η] = ([η]Tn , [η]T) ∈ H1(T

n × T;R) ≃
H1(T

n;R)× R is the de-Rham cohomology of η. It is possible to show [14] that
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the map ρ : M(L) −→ H1(T
n;R) is surjective and hence there exist invariant

probability measures for each rotation vector. Let us consider the minimal value
of the average action AL over the set of probability measures with a given rotation
vector. This minimum exists because of the lower semicontinuity of the action
functional on the set M(L) for the weak-∗ topology (see [14]):

βH : H1(T
n;R) −→ R

h 7−→ min
µ∈M(L): ρ(µ)=h

AL(µ) .

This function βH is what is generally known as β-function or effective Lagrangian.
A measure µ ∈ M(L) realizing such a minimum amongst all invariant probability
measures with the same rotation vector, i.e. AL(µ) = β(ρ(µ)), is called an action
minimizing measure with rotation vector ρ(µ). The β-function is convex and
therefore one can consider its conjugate function (given by Fenchel duality) αH :
H1(Tn;R) −→ R defined by

αH(c) := max
h∈H1(Tn;R)

(〈c, h〉 − βH(h)) .

This function is generally called α-function or effective Hamiltonian. See [14] for
more details.

Remark 1. It turns out that αH coincides with the symplectic homogenization
of H , usually denoted H (see [19, Proposition 9.3]).
More precisely, in the autonomous case, we just have H(p) = αH(p) while in
the non-autonomous case, we reduce ourselves to the autonomous one by setting
K(q, p, t, τ) = τ + H(q, p, t). Note that K(p, τ) is well defined and equal to
τ +H(p) for some function H . For this function, we have again H(p) = αH(p).

4 Main results

In this section we want to study the connection between the Hofer and γ-distance
on one hand, and Mather’s theory of minimal action on the other hand. We shall
then state our main results. Let us start by observing that Tonelli Hamiltonians
clearly do not belong to H0, since they lack compact support, and hence their
time-one maps are not element of Ham0(T

∗
T
n). Therefore, we need to restrict

them to compact subsets of T∗
T
n and, as done by Siburg in [15], consider “nice”

compactly supported extensions, such that the Hofer and γ- metrics are indepen-
dent of the choice of the extension. In the autonomous case this can be achieved
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by using the conservation of energy to obtain well-defined “truncated” flows and
then smooth them out. We shall then see how the same proof extends to the
setting considered in [15].

Let us consider H(q, p) an autonomous Tonelli Hamiltonian on T∗
T
n. Then,

for each r and each sufficiently small ε > 0, let us consider functions fr,ε such
that:

• fr,ε(s) = s for s ≤ r;

• fr,ε(s) ≤ r + ε for all s ∈ R and fr,ε(s) ≡ r for s ≥ r + ε;

• √
ε|f ′

r,ε(s)| ≤ 1 for all s ∈ R (this assumption will only be used in section
4.3 to define the Calabi invariant).

Now, we can define new Hamiltonians, given by Hr,ε = fr,ε(H). If we denote by
Sr := {(q, p) ∈ T∗

T
n : H(q, p) ≤ r}, then our new Hamiltonians will satisfy the

following conditions:

• Hr,ε − r is supported in Sr+ε;

• Hr,ε coincides with H on Sr;

• Hr,ε is bounded everywhere by r+ε and satisfies the condition
√
ε‖dpHr,ε‖ ≤

C, where C = supSr+ε
‖dpH‖.

We shall denote the set of all these possible extensions by Hr,ε(H). We can
now define Hofer and γ- distances from the identity:

- Hofer distance. We set

dH(id, ϕ;Sr) := lim
ε→0

dH(id, ϕHr,ε
).

The above limit is well defined since if Hr,ε and Kr,ε are two different ex-
tensions of H in Hr,ε(H), then ‖Hr,ε −Kr,ε‖C0 ≤ 2ε.

Note that dH(id, ϕ;Sr) only depends on Sr and ϕ, and not on H . We could
also take a non-autonomous Hamiltonian, possibly non-convex, generating
ϕ, provided it coincides with H near Sr. Indeed, the time one flow of

ϕt
Hr,ε

= ϕ
tf ′

r,ε(H)

H is determined by the knowledge of ϕ inside Sr and of
ϕt
H in Sr+ε \ Sr. But the latter is determined by the hypersurfaces ∂Ss for

r ≤ s ≤ r+ε. In any case we have the following lower bound: if ϕ 6= id there
is a ball in Sr such that ϕ(B) ∩ B = ∅ and then dH(id, ϕ;Sr) ≥ c(B) > 0,
where c(B) is the Ekeland-Hofer capacity of B (cf. [8]).
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- γ-distance. It can be defined as:

γ(id, ϕ;Sr) := lim
ε→0

γ(id, ϕHr,ε
).

Also this limit is well defined, for the same reasons as above. In fact, if Hr,ε

and Kr,ε are two different extensions of H in Hr,ε(H), then

γ(ϕ1
Hr,ε

, ϕ1
Kr,ε

) ≤ ‖Hr,ε −Kr,ε‖C0 ≤ 2ε.

Similarly, c±(ϕ;Sr) := limε→0 c±(ϕHr,ε
).

The same argument as before shows that γ(id, ϕ;Sr) depends only on Sr and
ϕ, and we have the same lower bound as for dH . Analogously one can also define
the associated asymptotic quantities dH∞, γ∞ and c±,∞.

We can now state our first result.

Theorem 1. Let ϕ be the flow of an autonomous Tonelli Hamiltonian H :
T∗

T
n −→ R and let Sr ≡ {(q, p) ∈ T∗

T
n : H(q, p) ≤ r}. Then, for each

r > infp∈Rn αH(p):
γ∞(id, ϕ;Sr) = r + βH(0).

More precisely, c−,∞(ϕ;Sr) = infp∈RH(p) = −βH(0) and c+,∞(ϕ;Sr) = r.

Observe now that using Proposition 1, we obtain the following result.

Corollary 1. Let ϕ be a Hamiltonian diffeomorphism generated by a Tonelli
Hamiltonian H : T∗

T
n −→ R. Then, for each r > infp∈Rn αH(p):

dH∞(id, ϕ;Sr) ≥ r + βH(0).

The method used to prove Theorem 1 allows us to provide a new proof of
Siburg’s result in [15] (see also [13] for a generalization to general cotangent
bundles). Let B∗

T
n denote the unit ball cotangent bundle of Tn, i.e. B∗

T
n :=

{(x, p) : ‖p‖ ≤ 1}. Siburg considered the set of admissible Hamiltonians HS

consisting of all smooth convex Hamiltonians H : B∗
T
n × T −→ R that satisfy

the following two conditions:

S1) H vanishes on the boundary of B∗
T
n, i.e. H(q, p, t) = 0 if ‖p‖ = 1;

S2) H admits a smooth extension KH : T∗
T
n × T −→ R that is of Tonelli type

and depends only on t and ‖p‖2 outside B∗
T
n × T.
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Then, he defined the following group:

HamS(B
∗
T
n) := {ϕ : B∗

T
n −→ B∗

T
n
∣∣ ϕ = ϕ1

H for some H ∈ HS}.
Observe that we cannot apply directly Theorem 1 in this setting, since these

Hamiltonian diffeomorphisms are not necessarily generated by autonomous Hamil-
tonians. However, due to the special form of the Hamiltonians, the above results
remain true.

Proposition 2. Let ϕ ∈ HamS(B
∗
T
n). Then:

dH∞(id, ϕ) ≥ γ∞(id, ϕ) = βH(0).

More precisely, c−,∞(ϕ) = infp∈RH(p) = −βH(0) and c+,∞(ϕ) = 0.

Remark 2. (i) The fact that βH(0) is independent of the extension KH , has been
proven in [15, Lemma 4.1]. Therefore, we define βH(0) := βKH

(0). Observe that
the independence could be also deduced from the above proposition and the fact
that the γ-distance depends only on ϕ.
(ii) The inequality

dH∞(id, ϕ) ≥ βH(0) (1)

is due to Siburg [15, Theorem 5.1].

This lower bound (1) induced Siburg to ask the following question:

Question [15, page 94]: does equality hold in (1)?

We will construct examples of convex Hamiltonian diffeomorphisms for which
the asymptotic Hofer distance from the identity is strictly greater than the asymp-
totic γ-distance.

Theorem 2. There exists ϕ ∈ HamS(B
∗
T
n), such that

γ∞(id, ϕ) < dH∞(id, ϕ) .

An easy consequence of Theorem 2 and Proposition 2 is that the above ques-
tion has a negative answer.

Corollary 2. There exists ϕ ∈ HamS(B
∗
T
n) generated by convex Hamiltonian

H, such that
dH∞(id, ϕ) > βH(0) .
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4.1 Proof of Theorem 1

Proof of Theorem 1. Using [19, Theorem 4.2 (6)], we obtain

c−,∞(ϕH ;Sr) = lim
ε→0

c−,∞(ϕ1
Hr,ε

) =

= lim
ε→0

inf
p∈Rn

Hr,ε(p).

Similarly,

c+,∞(ϕH ;Sr) = lim
ε→0

c+,∞(ϕ1
Hr,ε

) =

= lim
ε→0

sup
p∈Rn

Hr,ε(p).

Observe that since ‖Hr,ε −Hr‖C0 ≤ ε, then limε→0Hr,ε = Hr uniformly. We
want to prove that infp∈Rn Hr(p) = infp∈Rn H(p). Clearly we have infpHr(p) ≤
infpH(p), since Hr ≤ H . We thus have to prove that infpHr(p) ≥ infpH(p).

We shall need the following lemmata.

Lemma 1. Let fr,ε be a function such that fr,ε(x) = x for |x| ≤ r. Let us
consider a Hamiltonian H : T∗

T
n −→ R and set Hr,ε = fr,ε(H). If there exists

a Lagrangian Λp of cohomology class p, such that maxΛp
H ≤ r, then Hr,ε(p) =

H(p).

Proof. Since clearly the Poisson bracket of Hr,ε and H vanishes, we have

Hr,ε −H = Hr,ε −H

(see [19, Theorem 4.2 (7)]). It is thus enough to prove that Hr,ε −H(p) = 0.
In other words, let K be a Hamiltonian vanishing on Λp, we must show that
K(p) = 0. But this follows immediately from Remark 4.3 in [19].

Lemma 2. Let f be a function in C0(R,R) and H : T∗
T
n −→ R a convex

superlinear Hamiltonian. Then, f(H) = f(H).

Proof. Let us first consider the case in which f is smooth, convex and strictly
increasing. Then, f(H) is smooth, convex and superlinear and, using the char-
acterization of the α-function given in [6], we obtain:

f(H)(p) = inf
u∈C∞(Tn)

sup
q∈Tn

f(H(q, p+ du(q))).
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But clearly this coincides with f(infu∈C∞(Tn) supq∈Tn H(q, p + du(q)) = f(H(p)).

Now because f(H) and g(H) commute for any f and g, we have f(H)− g(H) =
f(H) − g(H). Since differences of convex increasing functions are functions of
bounded variations, and these form a dense subset among continuous functions2,
this concludes our proof.

As a result, we have that Hr = min{H, r} = min{H, r}, hence infpHr =
infp{H, r} = infpH(p), provided r > infH(p). And by the same argument,
suppHr = supp min{H, r} = r since lim‖p‖→∞H(p) = +∞. This concludes the
proof of Theorem 1.

4.2 Proof of Proposition 2

Before entering into the details of the proof, let us observe that also in this case
ϕ ∈ HamS(B

∗
T
n) is not necessarily compactly supported, therefore we need to

define compactly supported extensions. Let us denote B∗
rT

n := {(q, p) : ‖p‖ ≤
r}. If H is a generating Hamiltonian for ϕ, for each ε sufficiently small we can
consider new compactly supported Hamiltonians Hε = f0,ε(KH) supported in a
neighborhood of B∗

T
n×T. The Hamiltonian Hε has the following properties (see

section 4 for the properties of f0,ε):

(1) it coincides with H in B∗
T
n × T;

(2) it is non-negative and bounded by ε outsideB∗
T
n×T and satisfy

√
ε‖dpHε‖ ≤

C outside B∗
T
n × T, for some constant C depending only on H ;

(3) it depends only on ‖p‖2 and t outside B∗
T
n × T.

We denote the set of all these Hamiltonians by Hε(H). As before, we set

dH(id, ϕ) := lim
ε→0

dH(id, ϕHε
)

γ(id, ϕ) := lim
ε→0

γ(id, ϕHε
)

c±(ϕ) := lim
ε→0

c±(ϕHε
).

For the same reasons as before, these definitions are independent of the chosen
Hε and one can define analogously the associated asymptotic quantities.

2This is true by definition without the convexity requirement. However if h = f − g we may
also write h(x) = (f(x)+ cx2)− (g(x)+ cx2), and for c sufficiently large both terms are convex.

12



Proof of Proposition 2. Note first that the left-hand side inequality is just Propo-
sition 1. Let ϕ ∈ HamS(B

∗
T
n) be generated by a convex Hamiltonian H and

let KH denote its smooth extension to T∗
T
n × T, given by condition (S2) in the

definition of HS. Then,

βH(0) := βKH
(0) = sup

c∈H1(Tn;R)

(
〈c, 0〉 − αKH

(c)
)
= − inf

c∈H1(Tn;R)
αKH

(c) =

= − inf
p∈Rn

KH(p), (2)

where in the last equality we used that αKH
coincides with the symplectic ho-

mogenization KH .
Let B1 denote the closed unit ball in R

n with the standard norm. First, we
want to prove that KH ≡ 0 on ∂B1. Then, using the convexity of B1, it follows
easily that KH ≤ 0 in B1 and that:

max
B1

KH = 0 and min
B1

KH = min
p∈Rn

KH .

In order to prove that KH vanishes on ∂B1, observe that for each p0 ∈ ∂B1, KH

vanishes on the Lagrangian submanifold Λp0 := T
n×{p0}. The claim then follows

from [19, Theorem 4.2 (5)].
The proof of Proposition 2 can now be obtained applying [19, Theorem 4.2

(6)].
In fact,

γ∞(id, ϕ) = lim
ε→0

γ∞(id, ϕHε
) =

= lim
ε→0

c+,∞(ϕHε
)− lim

ε→0
c−,∞(ϕHε

) =

= lim
ε→0

sup
p∈Rn

Hε(p)− lim
ε→0

inf
p∈Rn

Hε(p). (3)

Using the fact that KH and Hε coincide on B
∗
T
n and proceeding as in Lemma

1, one can deduce that Hε(p) = KH(p) for each p ∈ B1. Moreover, since Hε is
bounded by ε, we obtain:

0 = sup
p∈B1

KH(p) = sup
p∈B1

Hε(p) ≤ lim
ε→0

sup
p∈Rn

Hε(p) ≤ lim
ε→0

ε = 0.

Similarly for the infimum of Hε, we have

0 ≥ inf
p∈B1

KH(p) = inf
p∈B1

Hε(p) = lim
ε→0

inf
p∈B1

Hε(p),

13



using for the last equality the fact that the left-hand side is independent of ε.
Now we use the fact thatHε ≥ 0 on T

n×{p} for any p ∈ R
n\B1 and [19, Theorem

4.2 (5)], to conclude that Hε(p) ≥ for p ∈ R
n \ B1, and hence infp∈Rn Hε(p) =

infp∈B1 Hε(p).
Therefore, substituting in (3) and using (2) we can conclude:

γ∞(id, ϕ) = lim
ε→0

sup
Rn

Hε(p)− lim
ε→0

inf
Rn
Hε(p) =

= − inf
p∈B1

KH(p) = βH(0).

4.3 Proof of Theorem 2

In this section we shall construct examples of ϕ ∈ HamS(B
∗
T
n) generated by a

convex Hamiltonian H , such that γ∞(id, ϕ) < dH∞(id, ϕ) .

Proof of Theorem 2. The basic observation is that in the compactly supported
case the Hofer distance can be bounded from below in terms of the so-called
Calabi invariant (see [4] and [3]):

Caℓ (ϕ) :=
∫ 1

0

∫

T∗Tn

H(q, p, t)ωn dt.

This invariant only depends on ϕ and not on the path defined by H . Indeed, let
us consider the Liouville form λ =

∑n

j=1 pjdqj on T∗
T
n. Then ϕ∗λ − λ = dfϕ,

and in the compactly supported case, an easy computation (see [3] for instance)
shows that

Caℓ (ϕ) = 1

n + 1

∫

T∗Tn

fϕ ω
n. (4)

Let us adapt this to the case of HamS(B
∗
T
n). In our situation we set again

Caℓ (ϕ) =
∫ 1

0

∫

B∗Tn

H(q, p, t)ωn dt.

Note that if Hε is a compactly supported extension of H (as defined in section
4.2), we have

lim
ε→0

Caℓ (ϕHε
) = Caℓ (ϕ). (5)
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Indeed, let us denote by B∗
ρ(ε)T

n a disc bundle of radius ρ(ε) that contains the

support of Hε − ε (i.e. contains K−1
H (ε)), and notice that since dpKH(q, p, t) · p

is non-zero near ∂B∗
T
n we have that ρ(ε) − 1 = O(ε). Applying formula (4) to

ϕHε
instead of ϕ, we get

Caℓ (ϕHε
) =

1

n+ 1

∫

B∗Tn

fϕ +
1

n+ 1

∫

B∗

ρ(ε)
Tn\B∗Tn

fϕHε
; (6)

but on B∗
ρ(ε)T

n \ B∗
T
n, fϕHε

is given by 〈dpHε(q, p, t), p〉 −Hε(q, p, t). It is thus

enough to check that the integral of this quantity on (B∗
ρ(ε)T

n \ B∗
T
n)× T goes

to zero as ε goes to zero, or else that

ε‖〈dHε(q, p, t), p〉 −Hε(q, p, t)‖C0
ε→0−→ 0.

Since ‖Hε‖C0 and ε‖dpHε(q, p, t)‖C0 go to zero on (B∗
ρ(ε)T

n \ B∗
T
n) × T, this

clearly holds.

We now compare the Hofer distance with the Calabi invariant.

Lemma 3. Let ϕ ∈ HamS(B
∗
T
n). Then,

dH∞(id, ϕ) ≥ 1

Vol(B∗Tn)
|Caℓ (ϕ)|.

Proof. Let ϕ ∈ HamS(B
∗
T
n) and H(q, p, t) be a (not necessarily convex) gener-

ating Hamiltonian. Recall from the definition of HamS(B
∗
T
n) that H(q, p, t) = 0

on ‖p‖ = 1 and that it admits a smooth extension Hε : T
∗
T
n×T −→ R in Hε(H),

which is a function only of t and ‖p‖2 outside B∗
T
n × T and which is bounded

by ε outside B∗
T
n × T (see section 4.2).

Now, denoting by ϕε the time-one flow ϕ1
Hε
, we may write:

dH(id, ϕε) =

∫ 1

0

Osc B∗

ρ(ε)
Tn(Hε,t) dt =

=
1

Vol(B∗
ρ(ε)T

n)

∫ 1

0

∫

T∗Tn

Osc T∗Tn(Hε,t)ω
n dt ≥

≥ 1

Vol(B∗
ρ(ε)T

n)

∣∣∣∣
∫ 1

0

∫

T∗Tn

Hε(q, p, t)ω
n dt

∣∣∣∣ =

=
1

Vol(B∗
ρ(ε)T

n)
|Caℓ (ϕε)| .
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Hence, using (5), we obtain:

dH(id, ϕ) = lim
ε→0

dH(id, ϕε) ≥

≥ lim
ε→0

1

Vol(B∗
ρ(ε)T

n)
|Caℓ (ϕε)| =

=
1

Vol(B∗Tn)
|Caℓ (ϕ)| .

Since H(q, p, t+ 1) = H(q, p, t), we can conclude that:

dH∞(id, ϕ) ≥ 1

Vol(B∗Tn)
lim

k→+∞

(
1

k

∣∣Caℓ (ϕk
H)

∣∣
)

=

=
1

Vol(B∗Tn)

∣∣∣∣
∫ 1

0

∫

B∗Tn

H(t, q, p)ωn dt

∣∣∣∣ =

=
1

Vol(B∗Tn)
|Caℓ (ϕ)|.

In order to find our example of ϕ ∈ HamS(B
∗
T
n) such that γ∞(id, ϕ) <

dH∞(id, ϕ), it is sufficient to find ϕ such that

γ∞(id, ϕ) <
1

Vol(B∗Tn)
|Caℓ (ϕ)|.

Let Uδ be a cube of side δ < 1
3
contained in T

n. Let H be a negative convex
Hamiltonian of the form H(q, p) = γ(q)(‖p‖2 − 1), such that γ(q) ≥ 0 and
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Figure 1: The sets Uδ, U2δ

γ(q) =

{
C on Uδ

c on T
n \ U2δ .

where c << C.
Observe that:

|Caℓ (ϕ1
H)| := lim

ε→0
|Caℓ (ϕ1

Hε
)| ≥ [δnC + c(1− 2nδn)]

∫

{‖p|≤1}

(1− ‖p‖2) dp .

If we set k :=
∫
{‖p|≤1}

(1− ‖p‖2) dp, then

|Caℓ (ϕ1
H)| ≥ [δnC + c(1− 2nδn)]k.
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In order to conclude the proof, it is sufficient to prove that

lim
ε→0

|Hε(p)| <
δnCk

Vol(B∗Tn)
for all p,

where as usual Hε denotes the symplectic homogenization of Hε. Then, applying
Proposition 2 and Lemma 3, it follows that

γ∞(id, ϕ) <
1

Vol(B∗Tn)
|Caℓ (ϕ)| ≤ dH∞(ϕ, id).

In order to prove this, we use the fact that if there exists a Lagrangian sub-
manifold Λp = ψ(Tn × {p}), where ψ ∈ Ham(T∗

T
n), such that −Hε

∣∣Λp < A,

then −Hε(p) ≤ A; see [19, Theorem 3.2]. We look for Λp in the form

Λp = {(q, p+ df(q)) : q ∈ T
n},

with f satisfying the condition ‖p+ df(q)‖ = 1 on U2δ.

Lemma 4. For all vectors p in R
n there exists a smooth function f on T

n such
that ‖df(q) + p‖ = 1 on U2δ.

Proof. Wemust find a vector field u(q) of norm 1 on U2δ, such that df(q) = u(q)−p
on U2δ. Take u to be constant on U2δ, then f(q) = 〈u− p, q〉 and extend this to
a smooth function on T

n.

Then,

−Hε(q, p+ df(q)) = 0 on U2δ (because ‖df(q) + p‖ = 1)

−ε ≤ −Hε(q, p+ df(q)) ≤ c on T
n \ U2δ .

Hence −H(p) = |H(p)| = limε→0 |Hε(p)| ≤ c for all p. Therefore, we proved
that

γ∞(ϕ, id) = lim
ε→0

Osc (Hε) ≤ lim
ε→0

sup
p∈Rn

|Hε(p)| ≤ c

Provided we choose our constants to satisfy c < δnCk
Vol(B∗Tn)

, this concludes the
proof of Theorem 2.
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Geom. Funct. Anal., 8: 788-809, 1998.

[7] Xiaojun Cui. An example of convex Hamiltonian diffeomorphism where
asymptotic distance from identity is strictly greater than the minimal action.
J. Differential Equations, 246 (3): 998–1006, 2009.

[8] Ivar Ekeland and Helmut Hofer. Symplectic topology and Hamiltonian dy-
namics. Math. Z. 200 (3): 355–378, 1989.

[9] Albert Fathi. The Weak KAM theorem in Lagrangian dynamics. 10th Pre-
liminary version, 2009.

[10] Helmut Hofer. On the topological properties of symplectic maps. Proc. Roy.
Soc. Edinburgh Sect. A, 115 (1-2): 25–38, 1990.
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