A framework for adaptive Monte-Carlo procedures - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2010

A framework for adaptive Monte-Carlo procedures

Résumé

Adaptive Monte Carlo methods are powerful variance reduction techniques. In this work, we propose a mathematical setting which greatly relaxes the assumptions needed by for the adaptive importance sampling techniques presented by Arouna in 2003. We establish the convergence and asymptotic normality of the adaptive Monte Carlo estimator under local assumptions which are easily verifiable in practice. We present one way of approximating the optimal importance sampling parameter using a randomly truncated stochastic algorithm. Finally, we apply this technique to the valuation of financial derivatives and our numerical experiments show that the computational time needed to achieve a given accuracy is divided by a factor up to $5$.
Fichier principal
Vignette du fichier
adaptive.pdf (220.4 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00448864 , version 1 (20-01-2010)
hal-00448864 , version 2 (07-07-2010)

Identifiants

Citer

Bernard Lapeyre, Jérôme Lelong. A framework for adaptive Monte-Carlo procedures. 2010. ⟨hal-00448864v1⟩

Collections

CERMICS
505 Consultations
1109 Téléchargements

Altmetric

Partager

More