Random sampling of lattice paths with constraints, via transportation - Archive ouverte HAL
Communication Dans Un Congrès Année : 2010

Random sampling of lattice paths with constraints, via transportation

Lucas Gerin
  • Fonction : Auteur
  • PersonId : 835101

Résumé

We discuss a Monte Carlo Markov Chain (MCMC) procedure for the random sampling of some one-dimensional lattice paths with constraints, for various constraints. We show that an approach inspired by optimal transport allows us to bound efficiently the mixing time of the associated Markov chain. The algorithm is robust and easy to implement, and samples an "almost" uniform path of length $n$ in $n^{3+\eps}$ steps. This bound makes use of a certain contraction property of the Markov chain, and is also used to derive a bound for the running time of Propp-Wilson's CFTP algorithm.
Fichier principal
Vignette du fichier
RicciArxiv2.pdf (223.28 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00439479 , version 1 (07-12-2009)
hal-00439479 , version 2 (05-02-2010)
hal-00439479 , version 3 (08-06-2010)
hal-00439479 , version 4 (20-08-2015)

Licence

Identifiants

Citer

Lucas Gerin. Random sampling of lattice paths with constraints, via transportation. 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10), Jun 2010, Vienna, Austria. p.317--328. ⟨hal-00439479v3⟩
198 Consultations
858 Téléchargements

Altmetric

Partager

More