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Abstract

We investigate Monte Carlo Markov Chain (MCMC) procedures for the random
sampling of some one-dimensional lattice paths with constraints, for various constraints.
We will see that an approach inspired by optimal transport allows us to efficiently bound
the mixing time of the associated Markov chain. The algorithm is robust and easy to
implement, and samples an ”almost” uniform path of length n in n

3+ε steps. This
bound makes use of a certain contraction property of the Markov chain, and is also
used to derive a bound for the running time of Propp-Wilson’s Coupling From The

Past algorithm.

1 Lattice Paths with Constraints

Lattice paths arise in several areas in probability and combinatorics, either in their own
interest (as realizations of random walks, or because of their interesting combinatorial prop-
erties: see [1] for the latter) or because of fruitful bijections with various families of trees,
tilings, words. The problem we discuss here is to efficiently sample uniform (or almost
uniform) paths in a family of paths with constraints.

There are several reasons for which one may want to generate uniform samples of lattice
paths: to make and try conjectures on the behaviour of a large ”typical” path, test algorithms
running on paths (or words, trees,...). In view of random sampling, it is often very efficient
to make use of the combinatorial structure of the family of paths under study. In some
cases, this yields linear-time (in the length of the path) ad-hoc algorithms [2, 6]. However,
the nature of the constraints makes sometimes impossible such an approach, and there is a
need for robust algorithms that work in lack of combinatorial knowledge.

Luby,Randall and Sinclair [11] design a Markov chain that generate sets of non-intersecting
lattice paths. This was motivated by a classical (and simple, see illustrations in [4, 14]) cor-
respondence between dimer configurations on an hexagon, rhombae tilings of this hexagon
and families of non-intersecting lattice paths. As the first step for the analysis of this chain,
Wilson [14] introduces a peak/valley Markov chain (see details below) over some simple lat-
tice paths and obtain sharp bounds for its mixing time. We present in this paper a variant
of this Markov chain, which is valid for various constraints and whose analysis is simple. It
generates an ”almost” uniform path of length n in n3+ε steps, this bound makes use of a
certain contraction property of the chain.

Appart from the algorithmic aspect, the peak/valley process seems to have a physical
relevancy as a simplified model for the evolution of quasicrystals (see a discussion on a
related process in the introduction of [4]). In particular, the mixing time of this Markov
seems to have some importance.

Notations

We fix three integers n, a, b > 0, and consider the paths of length n, with steps +a/− b, that
is, the words of n letters taken in the alphabet {a,−b}. Such a word s = (s1, s2, . . . , sn) is
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Figure 1: The lattice path S = (1, 2, 0, 1, 2, 3, 1) associated with the word
(1, 1,−2, 1, 1, 1,−2).

identified to the path S = (S1, . . . , Sn) := (s1, s1 + s2, . . . , s1 + s2 + · · ·+ sn).
To illustrate the methods and the results, we focus on some particular sub-families An ⊂

{a,−b}n:

1. Discretemeanders, denoted byMn, which are simply the non-negative paths: S ∈Mn

if for any i ≤ n we have Si ≥ 0. This example is mainly illustrative because the
combinatorial properties of meanders make it possible to perform exact sampling very
efficiently (an algorithm running in O(n1+ε) steps is given in [2], an order that we
cannot get in the present paper).

2. Paths with walls. A path with a wall of height h between r and s is a path such
that Si ≥ h for any r ≤ i ≤ s (see Fig. 2 for an example). These are denoted by
Wn =Wn(h, r, s), they appear in statistical mechanics as toy models for the analysis
of random interfaces and polymers (see examples in [7]).

3. Excursions, denoted by En, which are non-negative paths such that Sn = 0. In the case
a = b = 1, these correspond to well-parenthesed words and are usually called Dyck
words. In the general case, Duchon [6] proposes a rejection algorithm which generates
excursions in linear time.

4. Culminating paths of size n, denoted further by Cn, which are non-negative paths
whose maximum is attained at the last step: for any i we have 0 ≤ Si ≤ Sn. They
have been introduced in [2], motivated in particular by the analysis of some algorithms
in bioinformatics.

Figure 2: A path of steps +1/− 2, with a wall of height h = 6 between i = 10 and j = 15.

2 Sampling with Markov chains

We will consider Markov chains in a family An, where all the probability transitions are
symmetric. For a modern introduction to Markov chains, we refer to [8]. Hence we are
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given a transition matrix (pi,j) of size |An| × |An| with

pi,j = pj,i whenever i 6= j,

pi,i = 1−
∑

j 6=i

pi,j .

Lemma 1. If such a Markov chain is irreducible, then it admits as unique stationary dis-
tribution the uniform distribution π = π(An) on An.

Proof. The equality π(i)pi,j = π(j)pj,i holds for any two vertices i, j. This shows that the
probability distribution π is reversible for (pi,j), and hence stationary. It is unique if the
chain is irreducible.

This lemma already provides us with a scheme for sampling an almost uniform path in
An, without knowing much about An. To do so, we define a “flip” operator on paths, this
is an operator

φ : An × {1, . . . , n} × {↓, ↑} × {+,−} → An

(S, i, ε, δ) 7→ φ(S, i, ε, δ).

When i ∈ {1, 2, . . . , n− 1} the path φ(S, i, ↑, δ) is defined as follows : if (si, si+1) = (−b, a) =

then these two steps are changed into (a,−b) = . The n − 2 other steps re-
main unchanged. If (si, si+1) 6= (−b, a) then φ(S, i, ↑)δ = S. Note that in the case
i ∈ {1, 2, . . . , n− 1} the value of φ does not depend on δ.

For the case i = n, if δ = +, we define φ(S, n, ε)δ as before as if there would be a +a as
the end if the path. For instance, in the case where Sn = −b, the path φ(S, n, ↑)+, the n-th
step is turned into a.

The path φ(S, i, ↓)δ is defined equally: if i < n and (si, si+1) = , it turns into .
When δ = −, one flips as if there would be a −b at the end of the path.

For culminating paths, we have to take another definition of φ(S, n, ↑)δ, φ(S, n, ↓)δ, see
Section 2.1.

We are also given a probability distribution p = (pi)1≤i≤n, and we assume that pi > 0
for each i. We will consider a particular sequence p later on, but at this point we can take
the uniform distribution in {1, . . . , n}. We describe the algorithm below in Algorithm 1.

Algorithm 1 Approximate sampling of a path in An

initialize S = (+a,+a,+a, . . . ,+a)
I1, I2, · · · ← i.i.d. r.v. with law p

ε1, ε2, · · · ← i.i.d. uniform r.v. in {↑, ↓}
δ1, δ2, · · · ← i.i.d. uniform r.v. in {+,−}
for t = 1 to T do

if φ(S, It, εt)δt is in An then

S← φ(S, It, εt)δt
end if

end for

In words, this algorithm performs the Markov chain in An with transition matrix P =
(PR,S)R,S∈An

defined as follows:











PR,S = pi/2, if S 6= R and S = φ(R, i, ε)δ for some i, ε, δ

PR,S = 0 otherwise,

PR,R = 1−
∑

S 6=R
PR,S.
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Proposition 2. Denote by S(t) the random path obtained after the t-th run of the loop in
Algorithm 1. When t → ∞, the sequence S(t) converges in law to the uniform distribution
in An. Moreover, the execution of Algorithm 1 until time T is linear in T .

Proof. For the first claim, we have to check that the chain is aperiodic and irreducible.
Aperiodicity comes from the (many) loops. Irreducibility will follow from Lemma 4. For
the second claim, notice that the time needed for the test ”φ(S, It, εt) is in An” can be
considered as constant, since for the families Mn and En we only have to compare 0, Si

while for the family Wn we only have to compare Si with the height of the wall at i. For
the case of the culminating paths, see below in Section 2.1.

We now choose the distribution (pi). Instead of pi = 1/n, we will use the probability
distribution defined by

pi := i(2n− i)κ0 + a ( for i = 1, . . . , n), (1)

where

κ0 =
3

2n2(n+ 1)

a = 1/4n3.

We let the reader check that (pi)i≤n is indeed a probability distribution. The reason for
which we use this particular distribution will appear in the proof of Proposition 5. We will
then need the following relation: for each 1 ≤ i ≤ n− 1,

pi − pi−1/2− pi+1/2 = κ0. (2)

For Algorithm 1 to be efficient, we need to know how S(T ) is close in law to π. This
question is related to the spectral properties of the matrix P . In particular, the speed of
convergence is governed by the spectral gap (i.e. 1−λ, where λ is the largest of the modulus
of the eigenvalues different from one, see [10] for example), but this quantity is not known
in general. Some geometrical methods [5] allow to bound from below 1−λ, but they assume
a precise knowledge of the structure of the graph defined by the chain P . It seems that such
results do not apply here.

Instead, we will study the metric properties of the chain P with respect to a natural
distance on An, and show that it satisfies a certain contraction property.

2.1 The variant of Algorithm 1 for culminating paths

Unchanged, our Markov chain P cannot generate culminating paths since the path S =
(a, a, . . . , a) would then be isolated: it has no peak/valley and φ(S, n, ↓)− = (a, a, . . . ,−b)
which is not culminating.

Thus we propose a slight modification for the family Cn. We only change the definition
of φ(S, i, ε)δ when i = n (it won’t depend on δ). Since the maximum is reached at n, the
⌈b/a⌉+ 1 last steps are necessarily

(a, a, . . . , a) or (−b, a, . . . , a).

We thus define φ(S, n, ↑)δ as the path obtained by changing the ⌈b/a⌉ + 1 last steps into
(a, a, . . . , a) (regardless of their initial values in S) and φ(S, n, ↓)δ as the path obtained by
changing the ⌈b/a⌉+ 1 last steps into (−b, a, . . . , a).

Notice that despite this change the execution time of each loop of Algorithm 1 is still a
O(1):

• If It < n, the time needed for the test ”φ(S, It, εt)δt is in An” can be considered as
constant, since we only have to compare 0, Si, Sn.
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• If It = n, the new value Sn is compared with the maximum of S, which can be
done in O(n). Fortunately, this occurs with probability pn = O(1/n), so that the
time-complexity of each loop is, on average, a O(1).

3 Error estimates with contraction

Going back to a more general setting, we consider a Markov chain in a finite set V , endowed
with a metric d. For a vertice x ∈ V and a transition matrix P , we denote by Pδx (resp.
P tδx) the law of the Markov chain associated with P at time 1 (resp. t), when starting
from x. For x, y ∈ V , the main assumption made on P is that there is a coupling between

Pδx, P δy (that is, a random variable (X1, Y1) with X1

law
= Pδx, Y1

law
= Pδy) such that

E [d(X1, Y1)] ≤ (1 − κ)d(x, y), (3)

for some κ > 0, which is called the Ricci curvature of the chain, by analogy with the Ricci
curvature in differential geometry1. If the inequality holds, then it implies ([10],p.189) that
P admits a unique stationary measure π and that, for any x,

‖ P tδx − π ‖TV≤ (1− κ)tdiam(V ), (4)

where diam(V ) is the diameter of the graph with vertices V induced by the Markov chain.
The notation ‖ . ‖TV stands, as usual, for the Total Variation distance over the probability
distributions on V defined by

‖ µ1 − µ2 ‖TV:= sup
A⊂V

|µ1(A)− µ2(A)| .

Hence, a positive Ricci curvature gives the exponential convergence to the stationary mea-
sure, with an exact (i.e. (4) is non-asymptotic in t) bound. In many situations, a smart
choice for the coupling between X1, X2 gives a sharp rate of convergence in eq. (4) (see
some striking examples in [12]).

3.1 Metric properties of P

To apply the Ricci curvature machinery, we endow each An with the L1-distance

d1(S, S
′) =

1

a+ b

n
∑

i=0

|Si − S′
i|.

(Notice that |Si− S′
i| is always a multiple of a+ b.) For our purpose, it is fundamental that

this metric space is geodesic.

Definition 3. A Markov chain P in a finite set V is said to be geodesic with respect to
the distance d on V if for any two x, y ∈ V with d(x, y) = k, there exist k + 1 vertices
x0 = x, x1, . . . , xk = y in V such that for each i

• d(xi, xi+1) = 1 ;

• xi and xi+1 are neighbours in the Markov chain P (i.e. P (xi, xi+1) > 0).

This implies in particular that P is irreducible and that the diameter of P is smaller than
maxx,y d(x, y).

Lemma 4. For each family Cn,Wn,En,Mn the Markov chain of Algorithm 1 is geodesic
with respect to d1.

1The Ricci curvature is actually the largest positive number such that (3) holds, for all the couplings of
Pδx, P δy ; here we should rather say that Ricci curvature is larger than κ.
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Proof of Lemma 4. The proof goes by induction on k. We fix S 6= T (and denote by s, t
the corresponding words) ; we want to decrease d1(S, T ) by one, by applying the operator
φ with proper i, ε. We denote by i0 ∈ {1, . . . , n} the first index for which S 6= T . For
instance we have Ti0 = Si0 + a + b. Let j be the position of the left-most peak in T in
{i0 + 1, i0 + 2, . . . , n}, if such a peak exists. Then S′ := φ(T, j, ↓)δ is also in An: it is
immediate for the familiesMn,Wn, Cn, En. We have d1(S, S

′) = k − 1.
If there is no peak in T after i0, then (ti0+1, ti0+2, . . . , tn) = (a, a, . . . , a). Hence we try to

increase the final steps of S by one. To do so, we choose S′ := φ(S, n, ↑)δ if S 6= φ(S, n, ↑)δ,
or S′ = φ(S, j, ↑)δ where j is the position of the right-most −b otherwise (we choose the
right-most one to ensure that φ(S, j, ↑)δ remains culminating in the case where An = Cn.).

For meanders, excursions and walls, we will show that the Ricci curvature of P with
respect to the distance d1 is (at least) of order 1/n3.

Proposition 5. For the three families Mn, En,Wn, the Ricci curvature of the associated
Markov chain, with weights (pi) defined as in (1), is larger than κ0.

Proof of Proposition 5. Fix S,T in An ∈ {Mn, En,Wn}, we first assume that S,T are
neighbours, for instance T = φ(S, i, ↑) for some i.

Let (S1,S2) be the random variable in An ×An whose law is defined by

(S1,S2)
(law)
= (φ(S, I, E), φ(T, I, E)) ,

where I is a r.v. taking values in {1, . . . , n} with distribution p and E is uniform in {↑, ↓}.
In other words, we run one loop of Algorithm 1 simultaneously on both paths.

We want to show that S1,S2 are, on average, closer than S,T. Different cases may occur,
depending on I and on the index i where S,T differ.
Case 1. i = 1, 2, . . . , n− 2.
Case 1a. I = i. This occurs with probability pi and, no matter the value of E, we have
S1 = S2.
Case 1b. I = i− 1 or i+ 1. We consider the case i − 1. Since S and T coincide every-
where but in i, we necessarily have one of these two cases:

• there is a peak in S at i − 1 and neither a peak nor a valley in T at i − 1 (as in the
figure on the right) ;

• there is a valley in T at i− 1 and neither a peak nor a valley in S at i− 1.

In the first case for instance, then we may have d1(S
1,S2) = 2 if E =↓, while the distance

remains unchanged if E =↑. The case I = i + 1 is identical. This shows that with a
probability smaller than pi−1/2 + pi+1/2 we have d1(S

1,S2) = 2.
Case 1c. I 6= i− 1, i, i+ 1 and I 6= n. In this case, S and T are possibly modified in I,
but if there is a modification it occurs in both paths. It is immediate since for the families
Mn,Wn and En since the constraints are local.
Case 2. i = n− 1. In this case, it is easy to check that, because of our definition of
φ(S, n, ε)δ, we have

E
[

d1(S
1,S2)

]

≤ 1− pn−1 + pn−2/2 + pn/2 = 1− κ0.
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Case 3. i = n. We have

E
[

d1(S
1,S2)

]

≤ 1 + pn−1/2− pn/2 = 1− κ0.

Thus, we have proven that when S,T only differ at i

E
[

d1(S
1,S2)

]

≤ 2× (pi−1/2 + pi+1/2) + 0× pi + 1× (1− pi − pi−1/2− pi+1/2) (5)

≤ (1− κ0)× 1 = (1− κ0)d1(S, T ).

What makes Ricci curvature very useful is that if this inequality holds for pairs of neighbours
then it holds for any pair, as noticed in [3]. Indeed, take k+1 paths S0 = S, S1, . . . , Sk = T
as in Lemma 4 and apply the triangular inequality for d1:

E [d1(φ(S, I, E), φ(T, I, E))] ≤
k−1
∑

i=0

E [d1(φ(Si, I, E), φ(Si+1, I, E))]

≤ (1− κ0)k = (1− κ0)d1(S, T ).

Remark 6. It is easy to exhibit some S, T such that ineq. (5) is in fact an equality. In
the case where pi = 1/n, this equality reads E

[

d1(S
1,S2)

]

= d1(S, T ), and we cannot obtain
a positive Ricci curvature (though this does not prove that there is not another coupling or
another distance for which we could get a κ > 0 in the case pi = 1/n.).

We recall that for each family An, diam(An) = max d1(S,T) ≤ n(n + 1)/2. Hence,
combining Proposition 5with Eq. (4) gives our main result:

Theorem 7. For meanders, excursions and path with walls, Algorithm 1 returns an almost
uniform sample of π, as soon as T ≫ n3. Precisely, for any itinialization of Algorithm 1,

‖ S(T )− π ‖TV≤ diam(An)(1 − κ)T ≤
n(n+ 1)

2
exp

(

−
3

2n2(n+ 1)
T

)

.

Another formulation of this result is that the mixing time of the associated Markov chain,
defined as usual by

tmix :=

{

inf t ≥ 0 ; sup
v∈V

‖ P tδv − π ‖TV≤ e−1

}

(6)

(e−1 is here by convention), is smaller than n2(n + 1) logn. For culminating paths, the
argument of Case 1c fails and (5) does not hold, we are not able to prove such a result as
Theorem 7. However, it seems empirically that the mixing time is also of order n3 logn
(with a constant strongly dependent on a, b). A way to prove this could be the following
observation: take (S0,T0) = (S,T) two any culminating paths, and define

(St+1,Tt+1) = (φ(St, It, εt, δt), φ(T
t, It, εt, δt)),

where It, εt, δt are those in Algorithm 1. The sequence (‖ St −Tt ‖∞)t is decreasing through-
out the process. Unfortunately we cannot get a satisfactory bound for the time needed for
this quantity to decrease by one.

3.2 Related works

Bounding mixing times via a contraction property over the transportation metric is quite a
standard technique, the main ideas dating back to Dobrushin (1950’s). A modern introduc-
tion is made in [10]. For geodesic spaces, this technique has been developped in [3] under
the name path coupling.
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As mentioned in the introduction, the Markov chain P on lattice paths with uniform
weights pi = 1/n has in fact already been introduced for paths starting and ending at zero
(sometimes called bridges) in [11], and its mixing time has been estimated in [14]. Wilson
also proves a mixing time of order n3 logn, by showing that (3) holds with a different distance
(namely, a kind of Fourier transform of the heights of the paths)2. This is the concavity of
this Fourier transform which gives a good mixing time, exactly as the concavity of our pi’s
speeds up the convergence of our chain.

Wilson’s method is developped only for bridges in [14] and it is not completely straight-
forward to use it when the endpoints are not fixed. For instance, take n = 7 and a = b = 1,
and consider the paths + + + − − + + and − − − + + − −. There are more ”bad moves”
(moves that take away these paths) than ”good moves”.

4 Coupling From The Past with P

Propp-Wilson’s Coupling From The Past (CFTP) [13] is a very general procedure for the
exact sampling of the stationary distribution of a Markov chain. It is efficient if the chain
is monotonous with respect to a certain order relation � on the set V of vertices, with two
extremal points denoted 0̂, 1̂ (i.e. such that 0̂ � x � 1̂ for any vertex x). This is the case
here for each family Cn,Wn,En,Mn , with the partial order

S � T iff Si ≤ Ti for any i.

For the familyM10 with a = 1, b = −2 for instance, we have

0̂ = 0̂meanders = (1, 1,−2, 1, 1,−2, 1, 1,−2, 1),

1̂ = 1̂meanders = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

We describe CFTP, with our notations, in Algorithm 2.

Algorithm 2 CFTP: Exact sampling of a path in An

S← 0̂, T← 1̂
. . . , I−2, I−1 ← i.i.d. r.v. with law p

. . . , ε−2, ε−1 ← i.i.d. uniform r.v. in {↑, ↓}

. . . , δ−2, δ−1 ← i.i.d. uniform r.v. in {+,−}
τ = 1
repeat

S← 0̂, T← 1̂
for t = −τ to 0 do

if φ(S, It, εt) is in An then S← φ(S, It, εt)δt
if φ(T, It, εt) is in An then T← φ(T, It, εt)δt

end for

τ ← 2τ
until S = T

We refer to ([8],Chap.10) for a very clear introduction to CFTP, and we only outline
here the reasons why this indeed gives an exact sampling of the stationary distribution.

• The output of the algorithm (if it ever ends!) is the state of the chain P that has been
running ”since time −∞”, and thus has reached stationnarity.

• The exit condition S = T ensures that it is not worth running the chain from T steps
earlier, since the trajectory of any lattice path 0̂ � R � 1̂ is ”sandwiched” between
those of 0̂, 1̂, and therefore ends at the same value.
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Figure 3: A sketchy representation of CFTP : trajectories starting from 0̂, 1̂ at time −T/2
don’t meet before time zero, while those starting at time −T do.

Proposition 8. Algorithm 2 ends with probability 1 and returns an exact sample of the uni-
form distribution over An. For the families Wn,En,Mn, this takes on average O(n3(logn)2)
time units.

Let us mention that in the case where the mixing time is not rigorously known, Algorithm
2 (when it ends) outputs an exact uniform sample and therefore is of main practical interest
compared to MCMC.

Proof of Proposition 8. It is shown in [13] that Algorithm 2 returns an exact sampling in
O(tmix logH) runs of the chain, where tmix is defined in (6) and H is the length of the

longest chain of states between 0̂ and 1̂. It is a consequence of the proof of Lemma 4 that
H = O(n2). We have seen that tmix = O(n3 logn). (Recall that each test in Algorithm 2
takes, on average, O(1) time units.)

We recall that CFTP has a major drawback compared to MCMC. For the algorithm to
be correct, we have to reuse the same random variables It, εt, δt, so that space-complexity
is in fact linear in n3(logn)2. This may become an issue when n is large.

5 Concluding remarks and simulations

1. In Fig.4, we show simulations of the three kinds of paths, for a = 1, b = 2, n = 600. We
observe that the final height of the culminating path is very low (about 30), it would be
interesting to use our algorithm to investigate the behaviour of this height when n → ∞ ;
this question was left open in [2].

2. One may wonder to what extent this work applies to other families An of paths. The
main assumption is that the family of paths should be a geodesic space w.r.t. distance d1.
This is true for example if the following condition on An is fulfilled:

(R, T ∈ An and R � S � T )⇒ S ∈ An.

Notice however that this is quite a strong requirement, and it is not verified for culminating
paths for instance.

3. A motivation to sample random paths is to make and test guesses for some functionals
of these paths, taken on average over An. Consider a function f : An → R, we want an
approximate value of π(f) := card(An)

−1
∑

s∈An

f(s), if the exact value is out of reach by
calculation. We estimate this quantity by

π̂(f) :=
1

T

T
∑

t=1

f (S(t)) , (7)

2Notice that a, b do not have the same meaning in Wilson’s paper: a (resp. b) stands for the number of
positive (resp. negative) steps.
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Figure 4: (Almost) uniform paths of length 600, with a = 1, b = 2. From top to bottom: a
culminating path, a meander, a path with wall (shown by an arch).

(recall that S(t) is the value of the chain at time t). For Algorithm 1 to be efficient in
practice, we have to bound

P (|π(f)− π̂(f)| > r) , (8)

for any fixed r > 0, by a non-asymptotic (in T ) quantity. This can be done with ([9],
Th.4-5), in which one can find concentration inequalities for (8). The sharpness of these
inequalities depends on κ and on the geometrical structure of An.
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