THE AMITSUR–LEVITZKI THEOREM FOR THE ORTHOSYMPLECTIC LIE SUPERALGEBRA osp(1, 2n) - Archive ouverte HAL
Article Dans Une Revue Journal of Algebra and Its Applications Année : 2006

THE AMITSUR–LEVITZKI THEOREM FOR THE ORTHOSYMPLECTIC LIE SUPERALGEBRA osp(1, 2n)

Résumé

Based on Kostant's cohomological interpretation of the Amitsur–Levitzki theorem, we prove a super version of this theorem for the Lie superalgebras osp(1, 2n). We conjecture that no other classical Lie superalgebra can satisfy an Amitsur–Levitzki type super identity. We show several (super) identities for the standard super polynomials. Finally, a combinatorial conjecture on the standard skew supersymmetric polynomials is stated.
Fichier non déposé

Dates et versions

hal-00438862 , version 1 (04-12-2009)

Identifiants

Citer

Pierre-Alexandre Gie, Georges Pinczon, Rosane Ushirobira. THE AMITSUR–LEVITZKI THEOREM FOR THE ORTHOSYMPLECTIC LIE SUPERALGEBRA osp(1, 2n). Journal of Algebra and Its Applications, 2006, 5 (3), pp.307 - 332. ⟨10.1142/S0219498806001740⟩. ⟨hal-00438862⟩
56 Consultations
0 Téléchargements

Altmetric

Partager

More