A logarithmic Hardy inequality - Archive ouverte HAL
Article Dans Une Revue Journal of Functional Analysis Année : 2010

A logarithmic Hardy inequality

Résumé

We prove a new inequality which improves on the classical Hardy inequality in the sense that a nonlinear integral quantity with super-quadratic growth, which is computed with respect to an inverse square weight, is controlled by the energy. This inequality differs from standard logarithmic Sobolev inequalities in the sense that the measure is neither Lebesgue's measure nor a probability measure. All terms are scale invariant. After an Emden-Fowler transformation, the inequality can be rewritten as an optimal inequality of logarithmic Sobolev type on the cylinder. Explicit expressions of the sharp constant, as well as minimizers, are established in the radial case. However, when no symmetry is imposed, the sharp constants are not achieved among radial functions, in some range of the parameters.
Fichier principal
Vignette du fichier
loghardy20.pdf (380.32 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00438199 , version 1 (02-12-2009)

Identifiants

Citer

Manuel del Pino, Jean Dolbeault, Stathis Filippas, Achiles Tertikas. A logarithmic Hardy inequality. Journal of Functional Analysis, 2010, 259 (8), pp.2045-2072. ⟨10.1016/j.jfa.2010.06.005⟩. ⟨hal-00438199⟩
223 Consultations
478 Téléchargements

Altmetric

Partager

More