Toric varieties and spherical embeddings over an arbitrary field - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2011

Toric varieties and spherical embeddings over an arbitrary field

Mathieu Huruguen
  • Fonction : Auteur
  • PersonId : 865196

Résumé

We are interested in two classes of varieties with group action, namely toric varieties and spherical embeddings. They are classified by combinatorial objects, called fans in the toric setting, and colored fans in the spherical setting. We characterize those combinatorial objects corresponding to varieties defined over an arbitrary field $k$. Then we provide some situations where toric varieties over $k$ are classified by Galois-stable fans, and spherical embeddings over $k$ by Galois-stable colored fans. Moreover, we construct an example of a smooth toric variety under a $3$-dimensional nonsplit torus over $k$ whose fan is Galois-stable but which admits no $k$-form. In the spherical setting, we offer an example of a spherical homogeneous space $X_0$ over $\mr$ of rank $2$ under the action of $SU(2,1)$ and a smooth embedding of $X_0$ whose fan is Galois-stable but which admits no $\mr$-form.
Fichier principal
Vignette du fichier
articleeng2.pdf (384.76 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00438195 , version 1 (02-12-2009)
hal-00438195 , version 2 (13-04-2011)

Identifiants

Citer

Mathieu Huruguen. Toric varieties and spherical embeddings over an arbitrary field. 2011. ⟨hal-00438195v2⟩

Collections

CNRS FOURIER INSMI
89 Consultations
230 Téléchargements

Altmetric

Partager

More