Characterizing Feature Variability in Automatic Speech Recognition Systems - Archive ouverte HAL
Communication Dans Un Congrès Année : 2006

Characterizing Feature Variability in Automatic Speech Recognition Systems

Résumé

A method is described for predicting acoustic feature variability by analyzing the consensus and relative entropy of phoneme posterior probability distributions obtained with different acoustic models having the same type of observations. Variability prediction is used for diagnosis of automatic speech recognition (ASR) systems. When errors are likely to occur, different feature sets are considered for correcting recognition results. Experimental results are provided on the CH1 Italian portion of AURORA3.
Fichier principal
Vignette du fichier
Barrault-ICASSP2006.pdf (111.44 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-00433095 , version 1 (18-11-2009)

Identifiants

  • HAL Id : hal-00433095 , version 1

Citer

Loïc Barrault, Driss Matrouf, Renato de Mori, Roberto Gemello, Franco Mana. Characterizing Feature Variability in Automatic Speech Recognition Systems. International Conference on Acoustics, Speech and Language Processing, May 2006, Toulouse, France. pp.1029-1032. ⟨hal-00433095⟩
192 Consultations
233 Téléchargements

Partager

More