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ABSTRACT 

 
A method is described for predicting acoustic feature 
variability by analyzing the consensus and relative entropy 
of phoneme posterior probability distributions obtained with 
different acoustic models having the same type of 
observations. Variability prediction is used for diagnosis of 
automatic speech recognition (ASR) systems. When errors 
are likely to occur, different feature sets are considered for 
correcting recognition results. 
 Experimental results are provided on the CH1 Italian 
portion of AURORA3. 
 

1. INTRODUCTION 
 
Intrinsic feature variability depends on the set of classes that 
features have to discriminate. Most frequently considered 
classes are phonemes or phonetic features. Feature 
variability causes ambiguities in classifying speech signal 
segments. Ambiguities can be reduced by using different 
feature streams.  
A single feature stream can be obtained from different 
streams. In [6], a sub-optimal solution is proposed for 
selecting features from two different sets.  Other approaches 
integrate some specific parameters into a single stream of 
features [9].  
Without attempting to find an optimal set of acoustic 
measurements, many recent automatic speech recognition 
(ASR) systems combine streams of different acoustic 
measurements ([4], [10]). In [11] it is shown that log-linear 
interpolation provides good results when used for integrating 
probabilities computed with acoustic models with different 
feature sets. Another possibility [8] consists in combining 
the results of ASR systems in order to reduce word error 
rates (WER). 
In this paper, the possibility is considered to use multi-model 
systems for predicting feature variability as described in 
section 2. A solution is presented in section 3. Using 
variability indicators as diagnosis features, the possibility of 
predicting when it is potentially useful to use a new set of 
features is discussed in section 4. Results with a 
programmable use of a multi-feature system are presented in 
Section 5. 

2. PROBLEM DESCRIPTION 

 

A set a of acoustic features is used in an ASR front-end to 
segment the speech signal and assign to each segment 
hypotheses about class symbols Qq ∈∈∈∈ , where Q is an 

alphabet. Scores are assigned to the hypotheses. A 
frequently used score is the posterior probability 

[[[[ ]]]])nT(YqP a  computed with acoustic models. )nT(Ya  is a 

vector of values of the elements of a feature 

set
aℑ identifying a point in the acoustic space aΓ . T is the 

interval between two successive analysis frames. Symbols q 
may represent a phoneme, a phoneme in context, a transition 
between two phonemes or a state of a Hidden Markov 
Model (HMM). The impact of features on recognition 
results depends on many factors such as the number and 
complexity of the models and the frames used as 
observations. In spite of the use of context-dependent and 
speaker-dependent models, a tangible amount of errors 
remains which may depend on the imperfection of acoustic 
models or on intrinsic ambiguity of features. In the attempt 
to separate the effect of model imperfection from the effect 
of feature variability, the relative entropy of phoneme 
posterior probability distributions obtained with different 
models is considered. This relative entropy can be computed 
in a point of the acoustic space. When it is low, it is likely 
that the resulting equivocation in phoneme recognition is 
due to intrinsic feature variability. Furthermore, a predictor 
of equivocation is a useful element for the ASR system 
diagnosis. Equivocation between a channel source S which 

emits symbols Qf ∈  and the receiver R which hypothesizes 

symbols Qg ∈  is defined as follows: 

{{{{ }}}} {{{{ }}}}∑∑∑∑−−−−====
g,f

R fgPlogg,fP)S(H   (1) 

Notice that equivocation can be directly compared to the 
source entropy, while symbol error rates and vocabulary size 
or language perplexity are more difficult to compare since 
their dimensions are different.   
The coverage of the acoustic space in which the 
equivocation is expected to be low for an application corpus 
provides an indication of the degree of success for the 



application. Thus, it is important to find diagnostic 
confidence measures capable of predicting the degree of 
equivocation in points of the acoustic space. For the 

values )nT(Ya  for which equivocation is expected to be 

high, another set of features can be considered. The new set 
of features is likely to be useful if its relative entropy with 
respect to the initial set of features is high and if the 
expected equivocation in the corresponding points is low. 
An ASR setup with two different feature sets is considered 
in this paper together with two very different acoustic 
models, namely Artificial Neural Networks (ANN) and 
Gaussian Mixture Models (GMM). Furthermore, the 
different models are trained with different types of data in 
different conditions. 
 
3. COHERENCE OF HYPOTHESES GENERATED 

WITH DIFFERENT MODELS 

 
Posterior probabilities of phonemes given the acoustic 
observations are obtained with ANNs and GMMs. They are 

indicated as {{{{ }}}}(nT)YqP a
ANN  and { }(nT)YqP a

GMM . The 

ANN is a time-delay Neural Network which computes the 
probability of being in a state of an HMM, given the 
observation made of a set of input frames. This hybrid 
HMM-ANN system is described in [1]. The input window is 
7 frames wide, and each frame contains the set of features 
extracted by the front-end along with their first and second 
time derivatives. There are two hidden layers. The second 
hidden layer is fully connected with the output layer that 
estimates 686 emission probabilities of phonemes and 
diphone transitions. Only phoneme probabilities are 
considered in this study. The ANN parameters are trained 
with a rich corpus of generic telephone conversations. The 
GMMs are mixtures of 512 gaussians per phoneme. Their 
parameters are estimated with Maximum Likelihood (ML) 
estimation with the training set of each specific application 
and phoneme segments obtained with the ANN. They are 
introduced for deriving confidence indicators and not for use 
in an independent ASR system. The time segment in which 
acoustic features are computed is the same for both model 
types, but it could be different. In general, many model types 
could be considered by varying the phonetic context of the 
same phoneme or by varying the acoustic context in which 
parameters describing time frame nT are computed. Models 
with or without adaptation could also be compared. 
The comparison between phoneme posterior probability 
distributions obtained with ANN and GMM is performed on 
a segment SEGa(b,e,t). Symbol a describes the type of 
features, b indicates the beginning time of the segment, e 
indicates the end time and t the time at the middle. The 
relative entropy between the two posterior probability 

distributions {{{{ }}}})t,e,b(SEGqP)t(P a
a
ANN

a
ANN ====  and 

{{{{ }}}})t,e,b(SEGqP)t(P a
a
GMM

a
GMM ==== , is the Kullback-Leibler 

distance (KLD) indicated as: 

[[[[ ]]]]
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The symbol with the highest posterior probability is 
considered as the hypothesis generated with each model in 
the given segment. These hypotheses are respectively 

indicated as (((( ))))t,e,bg)t(g a
A

a
A ====  and (((( ))))t,e,bg)t(g a

G
a
G ==== .  

In [7], the average relative entropy has been used for 
selecting a feature set in a group of potential candidates. 
Here, relative entropy is used for measuring the divergence 
of the outputs of two systems fed by the same input data. 
Posterior probabilities obtained with these models may be 
inaccurate. Inaccuracy is reduced by combining these 
posterior probabilities with log-linear interpolation as 
proposed in [11]: 

)t(Plog)1()t(Plog)t(P a
GMM

a
ANN

a α−+α=   (3). 

The interpolation coefficient α is determined to maximize 
the phoneme recognition rate on the training set. Indicators 

of model accuracy are )t(KLDa , and the fact that different 

models assigns the maximum posterior probability to the 
same symbol. This is indicated by the truth of the predicate 

T)t(ca =  iff )t(g)t(g a
G

a
A = . 

4. RELATION BETWEEN MODEL DIVERGENCE 

AND CHANNEL EQUIVOCATION 

 
Two different types of feature streams are considered. The 
first set is based on Multi Resolution Analysis (MRA). 
Motivations for using these features and details are 
described in [2]. The other is based on 12 J-RASTA 
Perceptual Linear Prediction (PLP) coefficients [3] with 
their first and second time derivatives plus total energy and 
its time derivatives. An initial experiment was performed on 
the phonemes of the Italian portion of the CH1 (noisy) part 
of the AURORA3 corpus. The GMMs were trained using 
the Italian portion of the training corpus of AURORA3. The 
test set of the Italian portion of AURORA3 was used for 
both models. A channel model, represented in Figure 1, is 
considered for computing equivocation after forced 
alignment. A computation unit estimates, for all symbols, the 

posterior probabilities )t(Pm
A and )t(Pm

G . The log-linear 

interpolation of them is then computed for hypothesizing the 

phoneme (t)gm . )t(KLDm  is considered as an indicator of 



confidence related to modeling difficulty for the 

segment [ ])t,e,b(SEG m .  
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Figure 1- Diagnosis channel model 
 
The source entropy is 3.5306 bits. Figure 2 shows the 
relation between equivocation and )t(KLD  for the two 

feature sets. Along the X axis are values of X such that 

)t(KLDm <X. MRA features appear to be more suitable for 

the application considered, the set of symbols and the 
models used. Nevertheless, the main difference appears for 
high values of KLD.  

 

 

 

 

 

 

 

Figure 2 – Comparison of equivocations obtained with MRA 
features (continuous line) and JRASTAPLP features (dotted 

line) 

The relation between the truth of )t(cm  and equivocation is 

also worth considering. Figure 3 shows the relation between 

equivocation and )t(KLDm  depending on the consensus 

expressed by the truth of )t(cm . A maximum of 

equivocation of 0.221 with coverage of 54.11% is observed 

for all data when )t(cm  is true. An overall equivocation of 

0.11 was observed for )t(KLDm <0.5 with a coverage of 

40.55%. The overall equivocation is computed with the log 
linear interpolation of the probabilities computed with the 
two models. Three states, representing increasing variability 
expectations, can be identified from these data 

corresponding to )t(KLDm <0.5 (VS1), )t(KLDm >0.5 and 

consensus (VS2) )t(KLDm >0.5 (VS3). Indicators of 

variability are useful confidence descriptors. Notice that they 
are not necessarily related to the entropy measures proposed 
in [5]. Similar relations are obtained with the train and test 
sets and with JRASTA PLP features. With JRASTA PLP 
features an equivocation of 0.17 is found for KLD(t)<0.5 
with a coverage of 18.72%. This suggests that, at least with 

the models used and the application considered, MRA 
features are expected to exhibit lower variability for a larger 
portion of data. A similar behavior with higher equivocation 
was found for the Italian portion of SpeechDat, a large 
vocabulary, continuous speech telephone corpus. The source 
entropy for this corpus is 4.1 bits and the equivocation for 

)t(KLDm <0.5 is 0.5. 
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Figure 3 – Equivocation as a function of intervals of KLD(t) 
when MRA features are used with separate curves for the 

cases in which )t(cm  is true (dashed) and false (dotted).  

If )t(KLDm  is very small (e.g. <0.1), it is very likely that 

equivocation is due to intrinsic feature variability. The 
corresponding equivocation depends on the complexity and 
environment of the application. For the noisy connected 
digits, an equivocation of 0.037 was found. This value 
becomes 0.4 for SpeechDat. As the equivocation measures 
depend only on the acoustic models and the features, 
improvements can be obtained by enriching alphabet Q with 
context dependent symbols and performing model 
adaptation. In spite of this, it is hard to reduce the 
equivocation by a factor of 10. 

It is interesting to investigate the possibility of using 
JRASTAPLP features when variability with MRA features is 
in state VS3. For this purpose, let the vectors Ym(nT) and 
Yj(nT) respectively represent two different observations with 
MRA and JRASTAPLP features. Frame relative entropy is 
computed as follows:  

[ ] [ ])nT(P)nT(PDnTKLD j
A

m
Amj =  (4). 

 

If )nT(KLDmj  is low, that means that additional features do 

not provide a significant new amount of information. Notice 
that such a measure is independent from the lexicon and 
language models. The coverage as a function of KLD 
intervals has been analyzed. For KLD<1 a coverage of 88% 
was observed, indicating that the two feature sets provide 
very often rather similar probability distributions. 
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6. USING MULTIPLE FEATURE SETS FOR ASR 

 
The possibility of predicting feature variability makes it 
possible to introduce a new paradigm for integrating 
different feature sets. Given a feature set, e.g. MRA, it is 
possible to estimate the parameters of a Gaussian mixture 

[ ]{ })(,,, nTYN m
jjj Σµω . A partition in the space is 

obtained by considering zones in which each Gaussian 

[ ])(,, nTYN m
jj Σµ  provides the highest probability 

density. If the partition is detailed enough, one may assume 

that the posterior probability )(qPm
j  of symbol q exhibits 

little variability in each zone. A posterior probability 

)(qPj can be estimated in a learning phase using the feature 

set or a combination of sets which provides the lowest 
equivocation in that zone. During recognition, posterior 
probabilities are computed as follows: 

[ ] )()(,,)(
1

qPnTYNYqP j

J

j

m
jjjn ∑

=

Σ= µω  

A simple experiment was performed using the CH1 portion 
of the Italian test set in AURORA3 by choosing, for 

computing )(qPj , the most appropriate feature set between 

MRA and JRASTAPLP features. Phoneme posterior 
probabilities were computed with ANN. 
The overall WER decreases from 20.34 with MRA features 

to 18.06% by switching feature sets for computing )(qPj . It 

was also observed that 58% of the correctly hypothesized 
words with MRA/ANN exhibit consensus between all the 

phonemes in each word and the corresponding )(tg m
G . 

 

CONCLUSIONS 

An approach to characterize feature variability has been 
proposed. The results are used to derive confidence 
indicators based on which the use a new feature set can be 
programmed. By using it on 37.5% of the sentences a WER 
reduction of 11.2 % was observed on the CH1 test set of the 
Italian portion of AURORA3.  
New strategies will be investigated for performing a more 
accurate selection of speech segments for which high feature 
variability is expected. The possibility will also be 
investigated of introducing a programmable, more effective, 
local use of additional feature sets.  
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