Optimal model selection for stationary data under various mixing conditions - Archive ouverte HAL
Article Dans Une Revue Annals of Statistics Année : 2012

Optimal model selection for stationary data under various mixing conditions

Résumé

We build penalized least-squares estimators of the marginal density of a stationary process, using the slope algorithm and resampling penalties. When the data are $\beta$ or $\tau$-mixing, these estimators satisfy oracle inequalities with leading constant asymptotically equal to $1$.
Fichier principal
Vignette du fichier
art4.pdf (374.31 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00430463 , version 1 (06-11-2009)

Identifiants

Citer

Matthieu Lerasle. Optimal model selection for stationary data under various mixing conditions. Annals of Statistics, 2012, 39 (4), pp.1852-1877. ⟨10.1214/11-AOS888SUPP⟩. ⟨hal-00430463⟩
257 Consultations
101 Téléchargements

Altmetric

Partager

More