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Optimal model selection for stationary data under various

mixing conditions.

Matthieu Lerasle
∗

Abstract:

We build penalized least-squares estimators of the marginal density of a sta-

tionary process, using the slope algorithm and resampling penalties. When the

data are β or τ -mixing, these estimators satisfy oracle inequalities with leading

constant asymptotically equal to 1.
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heuristic, weak dependence.
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1 Introduction

The history of statistical model selection goes back at least to Akaike [Aka70], [Aka73] and
Mallows [Mal73]. They proposed to select among a collection of parametric models the one
which minimizes an empirical loss plus some penalty term proportional to the dimension of
the models. Birgé & Massart [BM97] and Barron, Birgé & Massart [BBM99] generalize this
approach, making the link between model selection and adaptive estimation. They also
proved that several estimation procedures as cross-validation (Rudemo [Rud82]) or hard
thresholding (Donoho et.al. [DJKP96]) can be interpreted in terms of model selection.
More recently, Birgé & Massart [BM07], Arlot & Massart [AM09] and Arlot [Arl07], [Arl09]
arised the problem of optimal model selection. Basically, the aim is to select an estimator
satisfying an oracle inequality with leading constant asymptotically equal to 1.
Two totally data driven procedures are known to achieve this goal: the slope algorithm,
introduced by Birgé & Massart [BM07] and the resampling penalties defined by Arlot
[Arl09]. Arlot & Massart [AM09] and Arlot [Arl09] proved that these estimators are
efficient to select the best histogram in a general regression framework. In [Ler09b], we
proved that these procedures are also optimal in density estimation, when the data are
independent.
There exists a lot of statistical frameworks where the data are not independent. The
previous results may therefore not hold. Baraud et.al. [BCV01] proved that penalties
proportional to the dimension can also be used when the data are β-mixing (for a definition
of the coefficient β, see Rozanov & Volkonskii [VR59] or Section 2). They worked in a
regression framework and Comte & Merlevède [CM02] extended the result to density
estimation. In [Ler09a], we proved that the same penalties can also be used with τ -mixing
data (the coefficient τ has been introduced by Dedecker & Prieur [DP05], see Section 2).
The main problem of the algorithm proposed by Comte & Merlevède [CM02] is that the
penalty term involves a constant depending on the mixing coefficients (both in the β and
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τ -mixing cases) which is typically unknown in practice.
As in the independent case, we prove that a resampling estimator catches the shape of
the ideal penalty with great generality as it “learns” part of the mixing structure of the
data (Künsch [Kün89], Liu & Singh [LS92]). We will also prove that the slope algorithm
can be used to calibrate in an optimal way the constant in front of the penalty term. The
new penalization procedure is totally data driven.
Let us now explain more precisely the problem that we will consider.

1.1 Least-squares estimators

We observe n real valued, identically distributed random variables X1, ...,Xn, defined on
a probability space (Ω,A,P), with common law P . We assume that a measure µ on
(R,B(R)) is given. We denote by L2(µ) the Hilbert space of square integrable real valued
functions and by ‖.‖ the associated L2-norm. The parameter of interest is the density s
of P with respect to µ, we assume that it belongs to L2(µ). For all function g in L1(P ),
we define

Pg =

∫

R

gsdµ = E (g(X)) , Png =
1

n

n
∑

i=1

g(Xi),

where X is a copy of X1, independent of (X1, ...,Xn). s minimizes the integrated contrast
t 7→ ‖t‖2 − 2Pt over L2(µ). The risk of an estimator ŝ of s is measured with the L2-loss,
that is ‖s− ŝ‖2, which is random when ŝ is.
The problem of density estimation is a problem of M -estimation. These problems are
classically solved in two steps when the data are independent. First, we choose a ”model”
Sm close to the parameter s, which means that inft∈Sm ‖s − t‖2 is ”small”. Then, we
minimize over Sm the empirical version of the integrated contrast, that is, we choose

ŝm ∈ arg min
t∈Sm

‖t‖2 − 2Pnt.

When the data are mixing, the coupling method is a very powerful tool to extend the
methods developed in the independent case. It can be summarized as follows.

Coupling method: Let I0, J0, ..., Ip−1, Jp−1 be a partition of {1, ..., n} satisfying q =
mink=0,...,p−1 min(Ik+1)−max(Ik) > 0 (for a proper definition of this partition see Section
2). For all k = 0, ..., p − 1, let Ak = (Xl)l∈Ik

and let lk be the length of Ik. A coupling
lemma associates to the sequence (Ak)k=0,...,p−1 independent random variables (A∗

k) such
that E (d(Ak, A

∗
k)) ≤ γ(q), where γ is the mixing coefficient of the data, d is a distance on

R
lk . Let I = ∪p−1

k=0Ik and let PA be the empirical process based on the data (Xi, i ∈ I),
that is PA =

∑

i∈I δXi/|I|. To bound quantities of the form F (Pn), built with the empirical
process, we first use algebraic inequalities to obtain

F (Pn) ≤ CF (PA). (1)

Then we have
F (PA) ≤ F (PA∗) + |F (PA) − F (PA∗)|.

We can now use the results available for independent random variables to bound F (PA∗)
and the mixing properties to bound |F (PA) − F (PA∗)|.
Up to our knowledge, all the model selection procedures proposed for mixing data use the
coupling methods. In this scheme, the bounds given on F (Pn) are the same as those given
for F (PA) and the only essentially suboptimal bound is the first one: F (Pn) ≤ CF (PA).
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We extend the procedures developed in the independent case in [Ler09b] through the cou-
pling method. As we are looking for optimal results, we will work with the process PA

instead of Pn, avoiding the lost (1). The counterpart of this choice is that we do not use
all the data to build our estimator. In particular, the variance of an oracle built only with
the variables (Xi)i∈I is bigger than the one of an oracle built with all the sample when the
data are independent. However, we will see in Section 4 that our final estimator improves
the previous procedures proposed in a mixing setting.
Let us now define the least-squares estimators by ŝA,m ∈ arg mint∈Sm PAQ(t). The mini-
mization problem defining ŝA,m can be computationally untractable for general sets Sm,
leading to untractable procedures. However, in density estimation, it can be easily solved
when Sm is a linear subspace of L2(µ) since, for any orthonormal basis (ψλ)λ∈m of Sm,

ŝA,m =
∑

λ∈m

(PAψλ)ψλ.

The risk of ŝA,m is decomposed in the classical bias and variance terms thanks to Pythago-
ras relation. Let sm be the orthogonal projection of s onto Sm, then

‖s− ŝA,m‖2 = ‖s− sm‖2 + ‖sm − ŝA,m‖2. (2)

The space Sm should be chosen in order to realize a trade-off between those quantities.
In [Ler09b], we proved a concentration inequality for ‖sm − ŝA,m‖2 around its expectation
when the data are independent. It proves that D∗

A,m = nE(‖sm − ŝA,m‖2) is a natural
complexity measure of Sm and, when the models Sm are sufficiently regular, we recovered
that the dimension dm of Sm has the same order as D∗

A,m. However, this is not true in
general, because there exist simple models (histograms with a small dm) where D∗

A,m >>
dm and model of infinite dimension whereD∗

A,m behaves nicely (see Birgé [Bir08] or Section
4).

1.2 Model selection

The choice of a “good” model Sm is impossible without strong assumptions on s, for
example that we have precise information on its regularity. However, if we only assume
that s is regular, it is possible to choose a collection of models (Sm)m∈Mn such that one
of them realizes an optimal trade-off (see for example Birgé & Massart [BM97] or Barron,
Birgé & Massart [BBM99]). Given the projection estimators (ŝA,m)m∈Mn associated to
this collection, the aim is then to build an estimator m̂ such that the final estimator,
s̃ = ŝA,m̂ behaves almost as well as any model mo in the set of oracles

M∗
n = {mo ∈ Mn, ‖ŝA,mo − s‖2 = inf

m∈Mn

‖ŝA,m − s‖2}.

This is the problem of model selection. More precisely, we want the final estimator s̃ =
ŝA,m̂ to satisfy one of the following type of oracle inequalities

∃K > 0, Cn > 0, γ > 1, P

(

‖s̃ − s‖2 > Cn inf
m∈Mn

{

‖s− ŝA,m‖2
}

)

≤ K

nγ
. (3)

∃K > 0, Cn > 0, E
(

‖s̃− s‖2
)

≤ CnE

(

inf
m∈Mn

{

‖s− ŝA,m‖2
}

)

+
K

n
. (4)

In both cases, the leading constant Cn should be as close as possible to 1. In order to
build m̂, remark that, for all m in Mn,

‖s− ŝA,m‖2 − ‖s‖2 = ‖ŝA,m‖2 − 2PAŝA,m + 2νA(ŝA,m),
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where νA = PA − P . An oracle minimizes ‖s − ŝA,m‖2 − ‖s‖2 over Mn. As we want to
imitate the oracle, we will design a map pen : Mn → R

+ and choose

m̂ ∈ arg min
m∈Mn

‖ŝA,m‖2 − 2PAŝA,m + pen(m), s̃ = ŝA,m̂. (5)

It is clear that the ideal penalty is penid(m) = 2νA(ŝA,m) and our goal is to design sharp
estimators of this quantity as penalty functions.
The key point to obtain oracle inequalities is the following decomposition of the risk of s̃.
For all m in Mn, let

p(m) = νA(ŝA,m − sm) = ‖ŝA,m − sm‖2.

For all m in Mn,

‖s− s̃‖2 = ‖s̃‖2 − 2P s̃ + ‖s‖2 = ‖s̃‖2 − 2PAs̃+ 2νAs̃+ ‖s‖2

≤ ‖ŝA,m‖2 − 2PAŝA,m + pen(m) + (2νA(s̃) − pen(m̂)) + ‖s‖2

= ‖s− ŝA,m‖2 + (pen(m) − 2νA(ŝA,m)) + (2νA(s̃) − pen(m̂))

Thus, for all m in Mn,

‖s− s̃‖2 ≤ ‖s− ŝA,m‖2 + (pen(m) − 2p(m)) + (2p(m̂) − pen(m̂)) + 2νA(sm̂ − sm). (6)

1.3 Optimal model selection

Let us now precise the definition of the methods that we will use to calibrate the penalty.

1.3.1 The slope algorithm

The ”slope heuristic” was introduced by Birgé & Massart [BM07] in the Gaussian regres-
sion framework. It states that there exists a complexity measure ∆m of Sm and a constant
Kmin such that

1. if pen(m) < Kmin∆m, ∆m̂ is too large, typically ∆m̂ ≥ C supm∈Mn
∆m, where C is

a constant independent of n.

2. if pen(m) ≃ K∆m for some K > Kmin, then ∆m̂ is “much smaller”,

3. if pen(m) ≃ 2Kmin∆m, then the risk of the selected estimator satisfies

‖s̃− s‖2 ≤ Cn inf
m∈Mn

{

‖s− ŝA,m‖2
}

, with Cn → 1, when n→ ∞

in expectation and with large probability.

When both ∆m and the associated Kmin are known, point 3 in this heuristic says that
pen(m) ≃ 2Kmin∆m is an optimal penalty. This heuristic is classically used when ∆m is
known and Kmin is unknown. Arlot & Massart [AM09] introduced the following algorithm
to calibrate the penalty term in this situation.

Slope algorithm

• For all K > 0, compute the selected model m̂(K) given by (5) with the penalty
pen(m) = K∆m and the associated complexity ∆m̂(K).
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• Find a constant Ko such that ∆m̂(K) is large when K < Ko, and ”much smaller”
when K > Ko.

• Take the final m̂ = m̂(2Ko).

In [Ler09b], we justified the slope heuristic in density estimation with independent data
for ∆m = E(‖sm − ŝA,m‖2), Kmin = 1. This complexity is unknown in practice and has
to be estimated. We proposed a resampling estimator and proved that it works without
extra assumptions on our collection of models. In this paper, we will extend these results
to mixing processes.

1.3.2 Resampling penalties

Data-driven penalties have been studied in density estimation, in particular, cross-validation
methods as in Stone [Sto74], Rudemo [Rud82] or Celisse [Cél08]. We extend the approach
of [Ler09b] based on the resampling penalties introduced by Arlot [Arl09]. We prove that
it provides optimal model selection procedures. An important ingredient in the proofs is
the coupling properties of mixing processes. The coupling result proved in Viennet [Vie97]
for β-mixing processes allows a straightforward extension of the results of [Ler09b]. The
coupling lemma available for τ -mixing sequences is not so powerful and in that case, we
have to develop new methods of proofs.

The paper is organized as follows. In Section 2, we introduce our new estimation proce-
dure and describe our main assumptions. In Section 3, we state our main results, we prove
the efficiency of the penalized least-squares estimators based on the slope heuristic and
on resampling methods. In Section 4, we compare our new estimators with those given in
[Ler09b]. The proofs of the main theorems are postponed to Section 5. Section 6 is an
Appendix where we recall some probabilistic lemmas proved in [Ler09b].

2 New estimation procedures

2.1 Blockwise decomposition of the data

Assume that n is even and let p and q be two integers such that 2pq = n. For all
k = 0, ..., p − 1, let Ik = (2kq + 1, ..., (2k + 1)q), Ak = (Xl)l∈Ik

and I = ∪p−1
k=0Ik. For all

functions t in L2(µ) and all x1, ..., xq in R, let

Lq(t)(x1, ..., xq) =
1

q

q
∑

i=1

t(xi), PAt =
1

p

p−1
∑

k=0

Lq(t)(Ak) =
2

n

∑

i∈I

t(Xi),

νA(t) = (PA − P )(t).

Let Sm be a linear space. The estimator ŝA,m associated to Sm, is defined by

ŝA,m ∈ arg min
t∈Sm

‖t‖2 − 2PAt. (7)

Given an orthonormal basis (ψλ)λ∈m of Sm, classical computations prove that

ŝA,m =
∑

λ∈m

(PAψλ)ψλ, ‖sm − ŝA,m‖2 =
∑

λ∈m

(νA(ψλ))2 = sup
t∈Bm

(νA(t))2.

5



2.2 Resampling penalties

The first penalization procedure is based on the resampling penalties introduced by Arlot
[Arl09]. The resampling algorithm is slightly modified in order to keep the dependence
structure inside the blocks (see Künsh [Kün89], Liu & Singh [LS92] or Radulovic [Rad02]).
Let W0, ...,Wp−1 be a resampling scheme, that is, a vector of random variables, indepen-
dent of X1, ...,Xn and exchangeable, i.e., for all permutation ξ of {0, ...p − 1},

(Wξ(0), ....,Wξ(p−1)) has the same law as (W0, ...,Wp−1).

Let PW
A and νW

A be the associated resampling empirical processes defined, for all t in
L2(µ), by

PW
A (t) =

1

p

p−1
∑

k=0

WkLq(t)(Ak),

νW
A (t) = (PW

A − W̄pPA)(t) =
1

p

p−1
∑

k=0

(Wk − W̄p)Lq(t)(Ak), where W̄p =
1

p

p−1
∑

k=0

Wk.

For all m in Mn, let

ŝW
A,m = arg min

t∈Sm

‖t‖2 − 2PW
A (t) =

∑

λ∈m

(PW
A ψλ)ψλ.

Setting v2
W = Var(W1 − W̄p) and CW = v−2

W , the resampling penalty is defined by

pen(m) = 2CW E
W

(

sup
t∈Bm

(νW
A (t))2

)

= 2CW

∑

λ∈m

E
W
(

(νW
A (ψλ))2

)

. (8)

Hereafter, for all m in Mn and for all function pen, the final estimator is always denoted
by

s̃ = ŝA,m̂, where m̂ = arg min
m∈Mn

‖ŝm‖2 − 2PAŝA,m + pen(m). (9)

2.3 Some measures of dependence

2.3.1 β-mixing data

The coefficient β was introduced by Rozanov & Volkonskii [VR59]. For a random variable
Y defined on a probability space (Ω,A,P) and a σ-algebra M in A, let

β(M, σ(Y )) = E

(

sup
A∈B

|PY |M(A) − PY (A)|
)

.

For all stationary sequence of random variables (Xn)n∈Z defined on (Ω,A,P), let

βk = β(σ(Xi, i ≤ 0), σ(Xi, i ≥ k)).

The process (Xn)n∈Z is said to be β-mixing when βk → 0 as k → ∞. Examples of β-
mixing processes can be found in the books of Doukhan [Dou94] and Bradley [Bra07]. One
of the most important is the following: a stationary, irreducible, aperiodic and positively
recurent Markov chain (Xi)i≥1 is β-mixing.
Let us recall Lemma 5.1 in Viennet [Vie97].

Lemma: (Viennet 1997) Assume that the process (X1, ...,Xn) is β-mixing and let p, q
and A0, ..., Ap−1 be respectively the integers and the random variables defined in Section
2.1. There exist random variables A∗

0, ..., A
∗
p−1 such that:
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1. for all k = 0, ..., p − 1, A∗
k = (X∗

2kq+1, ...,X
∗
(2k+1)q) has the same law as Ak,

2. for all k = 0, ..., p − 1, A∗
k is independent of A0, ..., Ak−1, A

∗
0, ..., A

∗
k−1,

3. for all k = 0, ..., p − 1, P(Ak 6= A∗
k) ≤ βq.

2.3.2 τ-mixing data

The coefficient τ was introduced by Dedecker & Prieur [DP05]. For all l in N
∗, for all x, y

in R
l, let dl(x, y) =

∑l
i=1 |xi − yi|. For all l in N

∗, for all function t defined on R
l, the

Lipschitz semi-norm of t is defined by

Lipl(t) = sup
x 6=y∈Rl

|t(x) − t(y)|
dl(x, y)

.

For all functions t defined on R, we will denote for short by Lip(t) = Lip1(t). Let λ1 be
the set of all functions t : R

l → R such that Lipl(t) ≤ 1. For all integrable, R
l-valued,

random variables Y defined on a probability space (Ω,A,P) and all σ-algebra M in A, let

τ(M, Y ) = E

(

sup
t∈λ1

|PY |M(t) − PY (t)|
)

.

For all stationary sequences of integrable random variables (Xn)n∈Z defined on (Ω,A,P),
for all integers k, r, let

τk,r = max
1≤l≤r

1

l
sup

k≤i1<..<il

{τ(σ(Xp, p ≤ 0), (Xi1 , ...,Xil ))}, τk = sup
r∈N∗

τk,r.

The process (Xn)n∈Z is said to be τ -mixing when τk → 0 as k → ∞. Examples of τ -mixing
processes can be found in the book of Dedecker et. al [DDL+07] or the articles of Dedecker
& Prieur [DP05] and Comte et. al [CDT08].
The following result has been obtained in Claim 1 in the proof of Theorem 4.1 of [Ler09a].
This is a consequence of a coupling lemma proved by Dedecker & Prieur [DP05].

Lemma: [τ -coupling, Claim 1 p17 in [Ler09a]] Assume that the process (X1, ...,Xn) is τ -
mixing and let p, q and A0, ..., Ap−1 be respectively the integers and the random variables
defined in Section 2.1. There exist random variables A∗

0, ..., A
∗
p−1 such that:

1. for all k = 0, ..., p − 1, A∗
k = (X∗

2kq+1, ...,X
∗
(2k+1)q) has the same law as Ak,

2. for all k = 0, ..., p − 1, A∗
k is independent of A0, ..., Ak−1, A

∗
0, ..., A

∗
k−1,

3. for all k = 0, ..., p − 1, E(dq(Ak, A
∗
k)) ≤ qτq.

2.4 Main assumptions

Let p, q and A0, ..., Ap−1 be respectively the integers and the random variables defined in
Section 2.1. For all m, m′ in Mn, let

v2
A,m,m′ = sup

t∈Sm+Sm′ ,‖t‖≤1
qVar(Lq(t)(A0)), DA,m = q

∑

λ∈m

Var(Lq(ψλ)(A0)),

bm,m′ = sup
t∈Sm+Sm′ ,‖t‖≤1

‖t‖∞ .
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For all m in Mn, let

RA,m = n‖s− sm‖2 + 2DA,m, eA,m,m′ =
q

p
b2m,m′ .

We denote by eA,m = eA,m,m, vA,m = vA,m,m. For all k ∈ N, let Mk
n = {m ∈ Mn, RA,m ∈

[k, k + 1)}. For all n in N
∗, for all k > 0, k′ > 0, for all γ ≥ 0, let [k] denote the integer

part of k and let

ln,γ(k, k′) = ln
(

(1 + Card(M[k]
n ))(1 + Card(M[k′]

n ))(k + 1)(k′ + 1)
)

+ (lnn)γ (10)

The following assumptions generalize Assumptions [V] and [BR] made in [Ler09b].

[V’]: There exist γ > 1 and a sequence (ǫn)n∈N, with ǫn → 0 such that, for all n in N,

sup
(m,m′)∈(Mn)2











(

v2
A,m,m′

RA,m ∨RA,m′

)2

∨ eA,m,m′

RA,m ∨RA,m′



 lm,m′







≤ ǫ4n,

where, for all m, m′ in Mn, lm,m′ = ln,γ(RA,m, RA,m′).

[BR’] There exist two sequences (h∗n)n∈N∗ and (ho
n)n∈N∗ with (ho

n∨h∗n) → 0 as n→ ∞ such
that, for all n in N

∗, for all mo ∈ arg minm∈Mn RA,m and all m∗ ∈ arg maxm∈Mn DA,m,
we have

RA,mo

DA,m∗

≤ ho
n,

n‖s− sm∗‖2

DA,m∗

≤ h∗n.

3 Main results

3.1 Resampling penalties

The first theorem justifies the use of resampling penalties for β-mixing data.

Theorem 3.1 Let X1, ...,Xn be a strictly stationary sequence of random variables with
common density s and let (Sm)m∈Mn be a collection of linear subspaces of L2(µ) satisfying
Assumption [V’]. Let s̃ be the estimator defined in (9) with pen(m) defined in (8).
Assume that X1, ...,Xn are β-mixing, then, there exists a constant C > 0 such that

P

(

‖s− s̃‖2 > (1 + 110ǫn) inf
m∈Mn

‖s− ŝA,m‖2

)

≤ Ce−
1

2
(ln n)γ

+ pβq. (11)

The second theorem justifies the use of resampling penalties for τ -mixing data.

Theorem 3.2 Let X1, ...,Xn be a strictly stationary sequence of random variables with
common density s and let (Sm)m∈Mn be a collection of linear subspaces of L2(µ) satisfying
Assumption [V’]. Let s̃ be the estimator defined in (9) with pen(m) defined in (8).
Assume that X1, ...,Xn are real valued and τ -mixing, then, there exists an absolute constant
C > 0 such that we have

E
(

‖s− s̃‖2
)

≤ (1 + 160ǫn)E

(

inf
m∈Mn

‖s− ŝA,m‖2

)

+ C
(

e−
1

2
(ln n)γ

+ τqMCn

)

, (12)

where the mixing complexity MCn is defined by the following formula:

MCn =
∑

m∈Mn





∥

∥

∥

∥

∥

∑

λ∈m

|ψλ|
∥

∥

∥

∥

∥

∞

sup
λ∈m

Lip(ψλ) + ‖s‖|Mn| sup
t∈Bm

Lip(t)



 .
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Comments:

• Theorems 3.1 and 3.2 can be compared with Theorem 2.5 in [Ler09b]. An extra term
pβq appears in the control of the deviation probability when the data are β-mixing.
In Section 4, it is proved that p and q can be chosen in order to have pβq ≤ Cn−α

for some α > 1 under classical assumptions on the mixing coefficients.

• When the data are τ -mixing, the mixing coefficient τq must control the mixing
complexity MCn. It is clear that MCn = ∞ for many collections of linear spaces
(Sm)m∈Mn (as histogram spaces for example). Therefore, the collection Mn should
be chosen carefully when we deal with τ -mixing data. In Section 4, it is proved that,
on wavelet spaces, p and q can be chosen in order to have τqMCn ≤ Cn−1 under
classical assumptions on the mixing coefficient.

• Up to our knowledge, inequalities (11) and (12) are the first oracle inequalities
obtained for totally data driven PLSE of the density s when the data are mixing.
Moreover, this is the first time that the risk of the selected estimator is compared
with the risk of an oracle and not with an upper bound.

3.2 Slope heuristic

We will now justify the use of the slope heuristic when the data are mixing. The following
theorems give point 1 in this heuristic, respectively for β and τ -mixing sequences. In both
cases, the complexity ∆m = DA,m/n can be used with the constant Kmin = 2.

Theorem 3.3 Let X1, ...,Xn be a strictly stationary sequence of random variables, with
common density s. Let Mn be a collection of models satisfying Assumptions [V’], [BR’]
and let ǫ∗n = ǫn ∨ h∗n.
Assume that there exists a constant 0 < δ < 1 such that, for all m in Mn,

0 ≤ pen(m) ≤ (2 − δ)DA,m

n
.

Let m̂, s̃ be the random variables defined in (9). Assume that X1, ...,Xn are β-mixing and
let

cn =
δ − 75ǫ∗n

2(1 + 27ǫn)
.

There exists a constant C > 0, such that, with probability larger than 1−Ce− 1

2
(ln n)γ −pβq,

DA,m̂ ≥ cnDA,m∗ , ‖s− s̃‖2 ≥ cn
ho

n

inf
m∈Mn

‖s − ŝA,m‖2. (13)

Theorem 3.4 Let X1, ...,Xn be a strictly stationary sequence of random variables, with
common density s. Let Mn be a collection of models satisfying Assumptions [V’], [BR’].
Assume that there exists a constant 0 < δ < 1 such that, for all m in Mn,

0 ≤ pen(m) ≤ (2 − δ)DA,m

n
.

Let m̂, s̃ be the random variables defined in (9). Assume that X1, ...,Xn are τ -mixing, let
MCn be the mixing complexity defined in Theorem 3.2 and let

c′n =
δ − h∗n

2(1 + 35ǫn)
.

9



There exists an absolute constant C > 0 such that

E(DA,m̂) ≥ c′nDA,m∗ − Cn
(

e−
1

2
(ln n)γ

+ τqMCn

)

. (14)

E
(

‖s− s̃‖2
)

≥ 2
c′n
ho

n

E

(

inf
m∈Mn

‖s− ŝA,m‖2

)

− C
(

e−
1

2
(ln n)γ

+ τqMCn

)

. (15)

Comment: When n is sufficiently large, cn ≥ δ/4, c′n ≥ δ/4. Hence, when pen(m) is not
larger than 2DA,m/n, inequalities (13) and (14) ensure that with high probability or in
expectation DA,m̂ ≥ cDA,m∗ , which is as large as possible. Inequalities (13) and (15) show
that no optimal oracle inequality can hold. This proves point 1 of the slope heuristic.
The following theorems justify the remaining points.

Theorem 3.5 Let X1, ...,Xn be a stationary sequence of random variables with common
density s. Let (Sm)m∈Mn be a collection of models satisfying [V’]. For all m in Mn, let
pen(m) be a penalty function and let s̃ be the estimator defined in (9).
Assume that X1, ...,Xn are β-mixing and that there exist constants δ̄ ≥ δ > −1 and
0 ≤ p′ < 1 such that, with probability at least 1 − p′, for all m in Mn,

4DA,m

n
+ δ

RA,m

n
≤ pen(m) ≤ 4DA,m

n
+ δ̄

RA,m

n
.

Let

cn =

(

1+δ̄+37ǫn
2(1+δ−27ǫn) if 1 + δ − 27ǫn > 0

+∞ if 1 + δ − 27ǫn ≤ 0
.

There exists a constant C > 0, such that, with probability at least 1−Ce− 1

2
(ln n)γ −pβq−p′,

DA,m̂ ≤ cnRA,mo, ‖s− s̃‖2 ≤ 2cn inf
m∈Mn

‖s− ŝA,m‖2, (16)

Theorem 3.6 Let X1, ...,Xn be a stationary sequence of random variables with common
density s. Let (Sm)m∈Mn be a collection of models satisfying [V’]. For all m in Mn, let
pen(m) be a penalty function and let s̃ be the estimator defined in (9).
Assume that X1, ...,Xn are τ -mixing and that there exist constants δ̄ ≥ δ > −1 and a
sequence (en)n∈N, with

∑

n∈N
en <∞ such that

E

(

sup
m∈Mn

(

4DA,m

n
+ δ

RA,m

n
− pen(m)

)

+

)

≤ en,

E

(

sup
m∈Mn

(

pen(m) − 4DA,m

n
− δ̄

RA,m

n

)

+

)

≤ en.

Let MCn be the mixing complexity defined in Theorem 3.2 and let

cn =

(

1+δ̄+55ǫn
2(1+δ−85ǫn) if 1 + δ − 85ǫn > 0

+∞ if 1 + δ − 85ǫn ≤ 0
.

There exists a constant C > 0, such that,

E (DA,m̂) ≤ cn (RA,mo + n(CτqMCn + en)) . (17)

E
(

‖s− s̃‖2
)

≤ cn

(

E

(

inf
m∈Mn

‖s− ŝA,m‖2

)

+ C (τqMCn + en)

)

(18)

10



Comments:

• DA,m̂ jumps from DA,m∗ (Theorem 3.3 and 3.4) to RA,mo when pen(m) is around
2DA,m/n. RA,mo is much smaller thanDA,m∗ under Assumption [BR’]. This justifies
point 2 of the slope heuristic. Point 3 comes from inequalities (16) and (18) applied
with δ = δ̄ = 0.

• It may be useful to overpenalize a little from a non asymptotic point of view. Imagine
that 1 − 67ǫn is very close to 0, then cn is much smaller if δ > 0 than if we take its
asymptotic optimal value 0.

• The practical implementation of these algorithms is discussed in general in Arlot
& Massart [AM09], see also the discussion for density estimation in [Ler09b]. The
slope heuristic is very fast to compute and shall be prefered when a shape of the
ideal penalty is available. The resampling-based estimators give this shape for more
general collections.

4 Comparison with previous results

In this section, we compare the estimator given by the resampling penalty with those given
in [Ler09a]. Recall that the estimator was chosen among the collection of least-squares
estimators (ŝm)m∈Mn , where ŝm = arg mint∈Sm ‖t‖2 − 2Pnt, by a penalization procedure

s̃ = ŝm̂, where m̂ = arg min
m∈Mn

‖ŝm‖2 − 2Pnŝm + pen(m). (19)

Mixing assumptions In [Ler09a], we considered two kinds of rates of convergence to 0
of the mixing coefficients. Let γ = β or τ .
[AR(θ)] arithmetical γ-mixing with rate θ: there exists C > 0 such that, for all k in N,
γk ≤ C(1 + k)−(1+θ),
[GEO(θ)] geometrical γ-mixing with rate θ: there exists C > 0 such that, for all k in N,
γk ≤ Ce−θk.

4.1 β-mixing processes

In Comte & Merlevède [CM02], as well as in [Ler09a], the collection of models was assumed
to satisfy the following assumptions:

[M1] For all m ∈ Mn, Sm is a linear space with finite dimension dm ≥ 2 and Nn =
maxm∈Mn dm satisfies Nn ≤ n.
[M2] There exists a constant Φ such that

∀m,m′ ∈ Mn,∀t ∈ Sm,∀t′ ∈ Sm′ , ‖t+ t′‖∞ ≤ Φ
√

dim(Sm + Sm′)‖t+ t′‖2.

[M3] dm ≤ dm′ implies that Sm ⊂ Sm′ .

From [M1], for all k > n, Mk
n = ∅ and, from [M3], for all k ≤ n, Card(Mk

n) ≤ 1. Hence,
there exists a constant cV such that, for all γ > 1,

lm,m′ ≤ cV (lnn)2γ

In order to verify [V’], we need two other assumptions.

[M4] There exists c′D > 0 such that, for all n in N
∗, for all m in Mn, DA,m ≥ c′Ddm.

11



[M5] There exist γ > 1 and a sequence rn → ∞ such that Rn(lnn)−4γ ≥ rn, where
Rn = infm∈Mn RA,m.

Under these assumption, the following result holds:

Corollary 4.1 Let Mn be a collection of models satisfying [M1]- [M5]. Assume that the
process (Xn)n∈Z is strictly stationary and arithmetically [AR(θ)] β-mixing with mixing
rate θ > 1. Let s̃ be the estimator defined in (9) with a resampling penalty (8). Let

ǫ∗n = (lnn)−1/4 ∧ r−1/8
n .

There exist constants C > 0 and κ > 0 such that

P

(

‖s̃− s‖2
2 > (1 + κǫ∗n) inf

m∈Mn

‖s− ŝA,m‖2
2

)

≤ C
(log n)2(θ+2)

nθ/2
.

Comments:

• This result can be compared with Corollary 3.1 in [Ler09b]. In the independent case,
the rate of convergence of the leading constant is always given by (rn)−1/4 and this
rate is often polynomial in n. It is not faster than (lnn)−1/4 in the β-mixing case.

The deviation probability was upper bounded by Ce−
1

2
(ln n)γ

for some constants
C > 0 and γ > 1, it is now polynomial in n.

• [M5] is hard to check in general. Let c−1
d = 2 supx≥1(lnx)

8x−1. [M5] is satisfied
for example, if there is no model in Mn that have dimension dm ≤ cd(lnn)8 and if
[M4] is satisfied. In this case, [M5] holds with rn = (ln n)2 and we deduce from our
previous computations the following result.

Corollary 4.2 Let Mn be a collection of models satisfying [M1]- [M4]. Assume that the
process (Xn)n∈Z is strictly stationary and arithmetically [AR(θ)] β-mixing with mixing
rate θ > 1. Let s̃ be the estimator defined in (9) with a resampling penalty (8). Then, there
exist constants κ > 0, C > 0 such that, with probability larger than 1−Cn−θ/2(log n)2(θ+2),

‖s̃− s‖2
2 ≤

(

1 +
κ

(lnn)1/4

)

inf
m∈Mn,dm≥cd(ln n)8

‖s− ŝA,m‖2
2 .

Comments: Corollary 4.2 can be compared with Theorem 3.1 in [Ler09a].

• Both procedures lead to trajectorial oracle inequalities of type (3).

• The penalty term in [Ler09a] depends on a constant cD, which is in general unknown.
On the other hand, in Corollary 4.2, the selection algorithm (X1, ....,Xn) 7→ s̃ is
totally computable.

• The risk of s̃ in Corollary 4.2 is compared with the best of the risks in the collection
Mn. It is compared with an upper bound on ‖s − sm‖2 + 2E

(

‖sm − ŝA,m‖2
)

in
[Ler09a].

• In [Ler09a], [M4] was not necessary. However, our new estimator improves this pre-
vious procedure every time that [M4] (or any other assumption ensuring [V’]) holds.

Corollary 4.3 Let Mn be a collection of models satisfying [M1]-[M5]. Assume that the
process (Xn)n∈Z is strictly stationary and geometrically [GEO(θ)] β-mixing with mixing
rate θ > 0. Let s̃ be the estimator defined in (9) with a resampling penalty (8). Let

12



ǫ∗n =
(

r
−1/8
n ∨ n−1/4(lnn)1+γ/2

)

and θ1 = θ ∧ 1.

There exist constants C > 0 and κ > 0 such that

P

(

‖s̃− s‖2
2 > (1 + κǫ∗n) inf

m∈Mn

‖s− ŝA,m‖2
2

)

≤ C
n

(lnn)2
e−

θ1
2

(ln n)2

Comments : Under the stronger assumption that the process is geometrically β-mixing,
we almost recover the same results as in the independent case. The rate of convergence

is now essentially given by r
−1/8
n (it was r

−1/4
n in the independent case) and the devia-

tion probability is upper bounded by Cn(lnn)−2e−
θ1
2

(ln n)2 (instead of Ce−
1

2
(ln n)2 in the

independent case).

4.2 τ-mixing processes

Our results for τ -mixing processes do not apply to general collections of models as men-
tioned before. We give in this section a classical collection where they might be used.
Dyadic Wavelet spaces:
This collection was the one of [Ler09a]. Wavelet spaces are classically considered because
the oracle is adaptive over Besov spaces (see for example Birgé & Massart [BM97] or
[Ler09a]). Hereafter, r is a real number, r ≥ 1 and we work with an r-regular orthonormal
multiresolution analysis of L2(µ), associated with a compactly supported scaling function
φ and a compactly supported mother wavelet ψ. Without loss of generality, we suppose
that the support of the functions φ and ψ is included in an interval [A1, A2) where A1 and
A2 are integers such that A2 −A1 = A ≥ 1.
For all functions t in L2(µ), we denote by ‖t‖BV its bounded variation semi-norm, that is

‖t‖BV = sup
l∈N∗

sup
−∞<a1<...<al<+∞

l−1
∑

j=1

|t(aj+1) − t(aj)|.

For all k in Z and j in N
∗, let ψ0,k : x →

√
2φ(2x − k) and ψj,k : x → 2j/2ψ(2jx − k).

The family {(ψj,k)j≥0,k∈Z} is an orthonormal basis of L2(µ). Let us recall the following
inequalities: let K∞ = (

√
2‖φ‖∞) ∨ ‖ψ‖∞, KL = (2

√
2Lip(φ)) ∨ Lip(ψ), KBV = AKL.

Then for all j ≥ 0, we have ‖ψj,k‖∞ ≤ K∞2j/2,

∥

∥

∥

∥

∥

∑

k∈Z

|ψj,k|
∥

∥

∥

∥

∥

∞

≤ AK∞2j/2 (20)

Lip(ψj,k) ≤ KL23j/2, (21)

‖ψj,k‖BV ≤ KBV 2j/2, . (22)

We assume that Mn is the following collection.

[W] dyadic wavelet generated spaces: let Jn = [ln(n)/ ln(2)], for all Jm = 1, ..., Jn, let

m = {(j, k), 0 ≤ j ≤ Jm, k ∈ Z}

and let Sm be the linear span of {ψj,k}(j,k)∈m.

Hereafter, u denotes the following real number

u =
3

1 + θ
∧ 1.
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As in the previous section, we add extra assumptions to prove [V’].

[T4] There exists a constant c′D > 0 such that, for all n ∈ N
∗, for all m in Mn,

DA,m ≥ c′D2Jm .

[T5] There exist a sequence rn → ∞ and a constant γ > 1 such that,

Rn(lnn)−
2γ

1−u ≥ rn.

As in the β-mixing case, we deduce the following corollary.

Corollary 4.4 Assume that the process (Xn)n∈Z is strictly stationary and arithmetically
[AR(θ)] τ -mixing with mixing rate θ > 2. Let Mn be a collection of regular wavelet spaces
[W] and assume moreover that [T4], [T5] hold. Let s̃ be the estimator defined in (9) with

a resampling penalty (8). Let ǫ∗n =
(

lnn ∧ r1−u
n

)−1/4
.

There exist constants C > 0 and κ > 0 such that

E

(

‖s̃− s‖2
2

)

≤ (1 + κǫ∗n)E

(

inf
m∈Mn

‖s− ŝA,m‖2
2

)

+ C
(ln n)2(1+θ)

n(θ−3)/2
.

Comments:

• With a mixing rate θ > 5, the estimator selected by a resampling penalty satisfies
an oracle inequality (4). This result can be compared with Corollary 4.1. When
the data are τ -mixing, we do not obtain a trajectorial oracle inequality (3) and the
condition on the mixing rate is stronger than in the β-mixing case. However, as
mentioned in the introduction, this result is very interesting because there is a lot
of examples of processes that are τ -mixing and not β-mixing.

• Assumption [T5] is hard to check in practice but it can be removed as in the β-
mixing, provided that we only consider models with dimension larger than cM (lnn)η

for some well chosen constants cM and η.

• We can get better rates of convergence if we assume that the process is geometrically
τ -mixing and if we choose p and q as in Corollary 4.3.

This result can also be compared with Theorem 4.1 in [Ler09a].

• As in the β-mixing case, the main improvement of Corollary 4.4 is that the new
procedure is totally data driven.

• The risk of s̃ is compared with the oracle in Corollary 4.4 whereas it is compared
with an upper bound on infm∈Mn

{

‖s− sm‖2 + 2E
(

‖sm − ŝA,m‖2
)}

in [Ler09a].

• [T4] was not necessary in [Ler09a] but our new procedure improves the one given
in [Ler09a] every time that [T4] or any other Assumption ensuring [V’] holds.

5 Proofs

5.1 Notations

Let us give some notations that we will use repeatedly all along the proofs.
Recall that p and q are integers such that 2pq = n. For all k = 0, ..., p − 1, Ik = (2kq +
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1, ..., (2k + 1)q), Ak = (Xi)i∈Ik
and I = ∪p−1

k=0Ik. For all functions t in L2(µ) and all
x1, ..., xq in R,

Lq(t)(x1, ..., xq) =
1

q

q
∑

i=1

t(xi), PAt =
1

p

p−1
∑

k=0

Lq(t)(Ak) =
2

n

∑

i∈I

t(Xi),

νA(t) = (PA − P )(t).

The estimator ŝA,m associated to the model Sm, is defined as

ŝA,m ∈ arg min
t∈Sm

PAQ(t).

For all m, m′ in Mn, let

Tm =
∑

λ∈m

(Lq(ψλ) − Pψλ)2,

Um =
1

p(p− 1)

p−1
∑

i6=j=0

∑

λ∈m

(Lq(ψλ)(Ai) − Pψλ)(Lq(ψλ)(Aj) − Pψλ),

p(m) = ‖sm − ŝA,m‖2 = sup
t∈Bm

(νA(t))2 =
∑

λ∈m

(νA(ψλ))2.

pW (m) =
1

v2
W

∑

λ∈m

E
W
(

(νW
A (ψλ))2

)

, δ(m,m′) = 2νA(sm − sm′).

Lemma 6.2 applied with n = p, Λ = m, tλ = Lq(ψλ), Xi = Ai−1, gives

pW (m) = 1
p(PA(Tm) − Um) (23)

p(m) − pW (m) = Um, (24)

where PA(Tm) =
∑p−1

k=0 Tm(Ak)/p.
For all functional T = F (A0, ..., Ap−1), let T ∗ = F (A∗

0, ..., A
∗
p−1), where the random vari-

ables (A∗
k) are given by the coupling Lemmas given in Section 2.3. In particular, we will

use repeatedly the notations P ∗
A, ν∗A, U∗

m, p∗(m), p∗W (m), δ∗(m,m′).
For all functions t of L2(µ), for all r in N and all x1, ..., xr, y1, ...yr in R,

|Lr(t)(x1, ..., xr) − Lr(t)(y1, ..., yr)| ≤ 1

r

r
∑

i=1

|t(xi) − t(yi)|

≤ 1

r
Lip(t)dr((x1, ..., xr), (y1, ..., yr)).

Thus, for all r in N
∗, Lipr(Lr(t)) ≤ Lip(t)/r.

For all k ∈ N, Mk
n = {m ∈ Mn, RA,m ∈ [k, k + 1)} and for all n in N and, for all k > 0,

k′ > 0 and γ ≥ 0, let

ln,γ(k, k′) = ln
(

(1 + Card(M[k]
n ))(1 + Card(M[k′]

n ))(k + 1)(k′ + 1)
)

+ (lnn)γ .

For all m, m′ in Mn, let lm,m′ = ln,γ(RA,m, RA,m′). From Lemma 6.1 applied with
α = α′ = 0, for all K > 1, there exists a constant C > 0 such that

∑

(m,m′)∈(Mn)2

e−Klm,m′ = Ce−K(lnn)γ
.

Under [V’],

sup
(m,m′)∈(Mn)2











(

v2
A,m,m′

RA,m ∨RA,m′

)2

∨ eA,m,m′

RA,m ∨RA,m′



 l2m,m′







≤ ǫ4n.
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5.2 Technical Lemmas

Lemmas 5.1 and 5.2 are coupling lemmas. They allow to work with p∗(m), p∗W (m),
δ∗(m,m′) instead of p(m), pW (m), δ(m,m′). Lemma 5.3 is a consequence of our study of
the independent case. It allows to extend the proofs of [Ler09b] to the mixing case. It is
the main tool of this paper.

Lemma 5.1 Let X1, ...,Xn be stationary random variables, real valued and β-mixing. Let
p and q be two integers such that 2pq = n and let A∗

0, ..., A
∗
p−1 be the random variables

given by Viennet’s Lemma in Section 2.3.1. Let (Sm)m∈Mn be a collection of linear spaces
of functions. Let (p(m))m∈Mn , (pW (m))m∈Mn , (δ(m,m′))(m,m′)∈(Mn)2 , (p∗(m))m∈Mn ,
(p∗W (m))m∈Mn , (δ∗(m,m′))(m,m′)∈(Mn)2 , be the associated collections defined in Section
5.1. There exists an event ΩC such that P(Ωc

C) ≤ pβq and such that, on ΩC , for all m,
m′ in Mn, we have

p(m) = p∗(m), pW (m) = p∗W (m), δ(m,m′) = δ∗(m,m′). (25)

Proof :

Let ΩC = {∀k = 0, ..., p − 1, Ak = A∗
k}. It comes from Viennet’s Lemma that

P(Ωc
C) ≤ pβq and it is clear that, on ΩC , (25) holds.

Lemma 5.2 Let X1, ...,Xn be stationary random variables, real valued, τ -mixing and with
common density s. Let p and q be two integers such that 2pq = n and let A∗

0, ..., A
∗
p−1 be the

random variables given by the τ -coupling’s Lemma in Section 2.3.2. Let Mn be a collec-
tion of models. Let (p(m))m∈Mn , (pW (m))m∈Mn , (δ(m,m′))(m,m′)∈(Mn)2 , (p∗(m))m∈Mn ,
(p∗W (m))m∈Mn , (δ∗(m,m′))(m,m′)∈(Mn)2 , be the associated collections defined in Section
5.1. Let MCn be the mixing complexity of Mn defined by

MCn =
∑

m∈Mn





∥

∥

∥

∥

∥

∑

λ∈m

|ψλ|
∥

∥

∥

∥

∥

∞

sup
λ∈m

Lip(ψλ) + ‖s‖|Mn| sup
t∈Bm

Lip(t)



 .

For all m, m′ in Mn,

E

(

sup
m∈Mn

|p(m) − p∗(m)|
)

≤ 4τqMCn (26)

E

(

sup
m∈Mn

|pW (m) − p∗W (m)|
)

≤ 8τq
p
MCn (27)

E

(

sup
m,m′∈Mn

δ(m,m′) − δ∗(m,m′)

)

≤ 4τqMCn. (28)

Proof :

For all m in Mn, we have

E

(

sup
m∈Mn

|p(m) − p∗(m)|
)

≤
∑

m∈Mn

E (|p(m) − p∗(m)|) .
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Moreover, for all m in Mn,

|p(m) − p∗(m)| =

∣

∣

∣

∣

∣

∑

λ∈m

((PA − P )ψλ)2 − ((P ∗
A − P )ψλ)2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

λ∈m

((νA + ν∗A)ψλ) ((PA − P ∗
A)ψλ)

∣

∣

∣

∣

∣

≤
∑

λ∈m

|(νA + ν∗A)ψλ|
1

p

p−1
∑

k=0

|Lq(ψλ)(Ak) − Lq(ψλ)(A∗
k)|

≤ 4

∥

∥

∥

∥

∥

∑

λ∈m

|ψλ|
∥

∥

∥

∥

∥

∞

sup
λ∈m

Lipq(Lq(ψλ))
1

p

p−1
∑

k=0

dq(Ak, A
∗
k)

≤ 4

q

∥

∥

∥

∥

∥

∑

λ∈m

|ψλ|
∥

∥

∥

∥

∥

∞

sup
λ∈m

Lip(ψλ)
1

p

p−1
∑

k=0

dq(Ak, A
∗
k).

We take the expectation in this last inequality and we use the τ -coupling Lemma of Section
2.3.2 to obtain (26).
From (23), we have

|pW (m) − p∗W (m)| =
1

p
|(PA − P ∗

A)(Tm) − (Um − U∗
m)| .

We have

(PA − P ∗
A)Tm =

∑

λ∈m

1

p

p−1
∑

k=0

(Lq(ψλ)(Ak) − Lq(ψλ)(A∗
k)) (Lq(ψλ)(Ak) + Lq(ψλ)(A∗

k) − 2Pψλ) ,

thus

|(PA − P ∗
A)Tm| = 4

∥

∥

∥

∥

∥

∑

λ∈m

|ψλ|
∥

∥

∥

∥

∥

∞

sup
λ∈m

Lipq(Lq(ψλ))
1

p

p−1
∑

k=0

dq(Ak, A
∗
k)

≤ 4

q

∥

∥

∥

∥

∥

∑

λ∈m

|ψλ|
∥

∥

∥

∥

∥

∞

sup
λ∈m

Lip(ψλ)
1

p

p−1
∑

k=0

dq(Ak, A
∗
k).

Moreover

Um − U∗
m =

1

p(p− 1)

p−1
∑

i6=j=0

∑

λ∈m

(Lq(ψλ(Aj)) − Pψλ)(Lq(ψλ(Ai)) − Lq(ψλ(A∗
i )))

+
1

p(p− 1)

p−1
∑

i6=j=0

∑

λ∈m

(Lq(ψλ(A∗
i )) − Pψλ)(Lq(ψλ(Aj)) − Lq(ψλ(A∗

j ))),

thus

|Um − U∗
m| ≤ 4

q

∥

∥

∥

∥

∥

∑

λ∈m

|ψλ|
∥

∥

∥

∥

∥

∞

sup
λ∈m

Lip(ψλ)
1

p

p−1
∑

k=0

dq(Ak, A
∗
k).
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Therefore,

E (|pW (m) − p∗W (m)|) ≤ 8

pq

∥

∥

∥

∥

∥

∑

λ∈m

|ψλ|
∥

∥

∥

∥

∥

∞

sup
λ∈m

Lip(ψλ)
1

p

p−1
∑

k=0

E(dq(Ak, A
∗
k))

≤ 8τq
p

∥

∥

∥

∥

∥

∑

λ∈m

|ψλ|
∥

∥

∥

∥

∥

∞

sup
λ∈m

Lip(ψλ).

Thus

E

(

sup
m∈Mn

|pW (m) − p∗W (m)|
)

≤
∑

m∈Mn

E (|pW (m) − p∗W (m)|)

≤ 8τq
p

∑

m∈Mn

∥

∥

∥

∥

∥

∑

λ∈m

|ψλ|
∥

∥

∥

∥

∥

∞

sup
λ∈m

Lip(ψλ).

Finally,

E

(

sup
m,m′∈Mn

δ(m,m′) − δ∗(m,m′)

)

≤
∑

m,m′∈Mn

E
(

|δ(m,m′) − δ∗(m,m′)|
)

and, for all m, m′ in Mn,

E
(

|δ(m,m′) − δ∗(m,m′)|
)

= 2E (|(PA − P ∗
A)(sm − sm′)|)

≤ 2

pq
Lip(sm − sm′)

p−1
∑

k=0

E (dq(Ak, A
∗
k))

≤ 2τqLip(sm − sm′).

For all x, y in R and all m,m′ in Mn,

(sm − sm′)(x) − (sm − sm′)(y) ≤ ‖s‖
(

sup
t∈Bm

Lip(t) + sup
t∈Bm′

Lip(t)

)

d(x, y)

Hence, Lip(sm − sm′) ≤ ‖s‖
(

supt∈Bm
Lip(t) + supt∈Bm′

Lip(t)
)

, thus

E

(

sup
m,m′∈Mn

δ(m,m′) − δ∗(m,m′)

)

≤ 4τq‖s‖|Mn|
∑

m∈Mn

sup
t∈Bm

Lip(t).

Let us now derive some consequences of the results of [Ler09b].

Lemma 5.3 Let A∗
0, ...,A∗

p−1 be i.i.d random variables valued in R
q, with 2pq = n.

Let Mn be a collection of models satisfying [V’] and let (p∗(m))m∈Mn , (p∗W (m))m∈Mn ,
(δ∗(m,m′))(m,m′)∈(Mn)2 , (DA,m)m∈Mn , (RA,m)m∈Mn be the associated collections defined
in Section 5.1. There exists a constant C > 0 such that

P

(

⋃

m∈Mn

{

p∗(m) − 2DA,m

n
> 15ǫn

RA,m

n

}

)

≤ Ce−
1

2
(ln n)γ

, (29)

P

(

⋃

m∈Mn

{

p∗(m) − 2DA,m

n
< −25ǫn

RA,m

n

}

)

≤ Ce−
1

2
(ln n)γ

. (30)
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P

(

⋃

m∈Mn

{

p∗(m) − p∗W (m) > 15ǫn
RA,m

n

}

)

≤ Ce−
1

2
(ln n)γ

, (31)

P

(

⋃

m∈Mn

{

p∗(m) − p∗W (m) < −25ǫn
RA,m

n

}

)

≤ Ce−
1

2
(ln n)γ

. (32)

P





⋃

m,m′∈Mn

{

δ∗(m,m′) > 12ǫn

(

RA,m ∨RA,m′

n

)}



 ≤ Ce−(ln n)γ
. (33)

There exists an absolute constant C > 0 such that

E

(

sup
m∈Mn

(

p∗(m) − 2DA,m

n
− 15ǫn

RA,m

n

)

+

)

≤ Ce−
1

2
(ln n)γ

. (34)

E

(

sup
m∈Mn

(

−p∗(m) +
2DA,m

n
− 35ǫn

RA,m

n

)

+

>

)

≤ Ce−
1

2
(ln n)γ

. (35)

E

(

sup
m∈Mn

(

p∗(m) − p∗W (m) − 20ǫn
RA,m

n

)

+

)

≤ Ce−
1

2
(ln n)γ

. (36)

E

(

sup
m∈Mn

(

−p∗(m) + p∗W (m) − 35ǫn
RA,m

n

)

+

)

≤ Ce−
1

2
(ln n)γ

. (37)

E

(

sup
m,m′∈Mn

(

δ∗(m,m′) − 20ǫn

(

RA,m ∨RA,m′

n

))

+

)

≤ Ce−
1

2
(ln n)γ

. (38)

Proof of the concentration inequalities :
p∗(m) = supt∈Bm

((ν∗A)(t))2 and A∗
0, ..., A

∗
p−1 are independent. Thus

E(p∗(m)) =
∑

λ∈m

Var (Lq(ψλ)(A0))

p
=

2DA,m

n
,

sup
t∈Bm

Var (Lq(t)(A0)) =
v2
A,m

q
,

supt∈Bm
‖Lq(t)‖2

∞

p
≤ eA,m

q
.

We apply Proposition 6.3 in the Appendix with B = {Lq(t), t ∈ Bm}, D = DA,m/q,
v2 = v2

A,m/q, ǫ = eA,m/q and n = p. For all x > 0 and all m in Mn, with probability

larger than 1 − e−x

p∗(m) − 2DA,m

n
≤

2D
3/4
A,m(eA,m(19x)2)1/4 + 6

√

DA,mv2
A,mx+ 6v2

A,mx+ 2eA,m(19x)2

n

and, with probability larger than 1 − 2.8e−x

2DA,m

n
− p∗(m) ≤

16D
3/4
A,m(eA,mx

2)1/4 + 15.22
√

DA,mv2
A,mx+ 2eA,m(40.25x)2

n
. (39)

Let K > 0 be a constant to be chosen later, let lm = ln,γ(Rm, Rm), and let x = K2lm.
From [V’] applied with m = m′, since DA,m ≤ RA,m,

v2
A,mx ≤ (Kǫn)2RA,m, eA,mx

2 ≤ (Kǫn)4RA,m,
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D
3/4
A,m(eA,mx

2)1/4 ≤ KǫnRA,m,
√

DA,mv2
A,mx ≤ KǫnRm. (40)

Let en(K) = (2
√

19 + 6)K + 6K2ǫn + 2(19)2K4ǫ3n, from (40),

2D
3/4
A,m(eA,m(19x)2)1/4 + 6

√

DA,mv2
A,mx+ 6v2

A,mx+ 2eA,m(19x)2

n
≤ en(K)ǫn

Rm

n
.

Thus, from Lemma 6.1, for all K > 1/
√

2, there exists a constant C > 0 such that

P

(

⋃

m∈Mn

{

2DA,m

n
− p∗(m) > en(K)ǫn

RA,m

n

}

)

≤

∑

m∈Mn

P

(

p∗(m) − 2DA,m

n
> en(K)ǫn

RA,m

n

)

≤
∑

m∈Mn

e−K2lm ≤ Ce−K2(ln n)γ
.

Let K = 11/(2
√

19 + 6) > 1/
√

2 and choose n sufficiently large such that 6K2ǫn +
2(19)2K4ǫ3n ≤ 4, then en(K) ≤ 15 and (29) holds for all n sufficiently large. It holds for
all n provided that we enlarge C if necessary.

Let e
(2)
n (K) = 31, 22K + 2(40, 25)2K4ǫ3n, from (40),

16D
3/4
A,m(eA,mx

2)1/4 + 15.22
√

DA,mv2
A,mx+ 2eA,m(40.25x)2

n
≤ e(2)n (K)ǫn

RA,m

n
.

We apply inequality (39) with x = K2lm. For all K > 1/
√

2, there exists a constant C > 0
such that

P

(

⋃

m∈Mn

{

p∗(m) − 2DA,m

n
< −e(2)n (K)ǫn

RA,m

n

}

)

≤

∑

m∈Mn

P

(

p∗(m) − 2DA,m

n
< −e(2)n (K)ǫn

RA,m

n

)

≤ 2.8
∑

m∈Mn

e−K2lm ≤ Ce−K2(ln n)γ
.

Take K = 23/31.22 > 1/
√

2 and n sufficiently large to have 2(40, 25)2K4ǫ3n ≤ 2, then

e
(2)
n (K) ≤ 25 and (30) holds for sufficiently large n. It holds then in general, provided that

we enlarge the constant C if necessary.
From (24), p∗(m) − p∗W (m) = U∗

m. Therefore, from Lemma 6.4 in the appendix, for all m
in Mn and all x > 0, with probability larger than 1 − 2e−x,

p∗(m) − p∗W (m) ≤
10.62D

3/4
A,m(eA,mx

2)1/4 + 6
√

v2
A,mDA,mx+ 6v2

A,mx+ 2eA,m(19.1x)2

n− 1
,

(41)
and, with probability larger than 1 − 3.8e−x,

p∗W (m) − p∗(m) >
18D

3/4
A,m(eA,mx

2)1/4 + 15.22
√

v2
A,mDA,mx+ 2eA,m(40.3x)2

n− 1
. (42)

Let K > 0, e
(3)
n (K) = (16.62K + 6K2ǫn + 2(19.1)2K4ǫ3n)n/(n − 1) and x = K2lm, from

(40),

10.62D
3/4
A,m(eA,mx

2)1/4 + 6
√

v2
A,mDA,mx+ 6v2

A,mx+ 2eA,m(19.1x)2

n− 1
≤ e(3)n (K)ǫn

RA,m

n
.

20



We apply (41) with x = K2lm. From Lemma 6.1, for all K > 1/
√

2, there exists a constant
C such that

P

(

⋃

m∈Mn

{

p∗(m) − p∗W (m) > e(3)n (K)ǫn
RA,m

n

}

)

≤

∑

m∈Mn

P

(

p∗(m) − p∗W (m) > e(3)n (K)ǫn
RA,m

n

)

≤ 2
∑

m∈Mn

e−K2lm ≤ Ce−K2(ln n)γ
.

Take K = 12/16.62 > 1/
√

2 and n ≥ 15 such that 6K2ǫn + 2(19.1)2K4ǫ3n ≤ 2, then

e
(3)
n (K) ≤ 15 and (31) holds for sufficiently large n. It holds in general provided that we

enlarge C if necessary.

Let K > 0, e
(4)
n (K) = (33.22K + 2(40.3)2K4ǫ3n)n/(n − 1) and x = K2lm. From (40),

18D
3/4
A,m(eA,mx

2)1/4 + 15.22
√

v2
A,mDA,mx+ 2eA,m(40.3x)2

n− 1
≤ e(4)n (K)ǫn

RA,m

n
.

We apply (41) with x = K2lm. From Lemma 6.1, for all K > 1/
√

2, there exists a constant
C such that

P

(

⋃

m∈Mn

{

p∗W (m) − p∗(m) > e(4)n (K)ǫn
RA,m

n

}

)

≤

∑

m∈Mn

P

(

p∗W (m) − p∗(m) > e(4)n (K)ǫn
RA,m

n

)

≤ 3.8
∑

m∈Mn

e−K2lm ≤ Ce−K2(ln n)γ
.

Take K = 23.5/33.22 > 1/
√

2 and n ≥ 25 such that 2(40.3)2K4ǫ3n ≤ 0.5, then e
(4)
n (K) ≤ 25

and (32) holds for sufficiently large n. It holds in general provided that we enlarge C if
necessary.
Finally, we apply Lemma 6.5 in the appendix to the functions sm − sm′ , with L = Lq and
νn = νA, we have v2 ≤ v2

A,m,m′/q and ǫ ≤ eA,m,m′/q. For all m,m′ in Mn,

‖sm − sm′‖2 ≤ 2(‖sm − s‖2 + ‖sm′ − s‖2) ≤ 4
RA,m ∨RA,m′

n
,

thus, for all η > 0, for all x > 0,

P

(

δ∗(m,m′) > 4η

(

RA,m ∨RA,m′

n

)

+
8v2

A,m,m′x+ 4eA,m,m′x2/9

ηn

)

≤ e−x. (43)

Let K > 0, lm,m′ = ln,γ(RA,m, RA,m′), x = K2lm,m′ and e
(5)
n (K) =

√

2K2 +K4ǫ2n/9.
From (40),

8v2
A,m,m′x+ 4eA,m,m′x2/9 ≤ 4(e(5)n (K))ǫn)2RA,m ∨RA,m′ ,

thus, for η = e
(5)
n (K))ǫn,

4η

(

RA,m ∨RA,m′

n

)

+
8v2

A,m,m′x+ 4eA,m,m′x2/9

ηn
≤ 8e(5)n (K))ǫn

RA,m ∨RA,m′

n
.
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Hence, for all K > 1, there exists a constant C > 0 such that

P





⋃

m,m′∈Mn

{

δ∗(m,m′) > 8e(5)n (K))ǫn
RA,m ∨RA,m′

n

}





≤
∑

m,m′∈Mn

P

(

δ∗(m,m′) > 8e(5)n (K))ǫn
RA,m ∨RA,m′

n

)

≤
∑

m,m′∈Mn

e−K2lm,m′ ≤ Ce−K2(ln n)γ
.

Take K = 11.4/(8
√

2) > 1 and n sufficiently large to have 8
√

K4ǫ2n/9 ≤ 0.6, then

8e
(5)
n (K)) ≤ 12 and (33) holds for sufficiently large n. It holds in general provided that

we increase C if necessary.
Proof of the results in expectation
Let K > 0, z > 0, lm = ln,γ(Rm, Rm), x = K2lm(1 + z) and

e(6)n (K, z) = (2
√

19 + 6)K
√
x+ 6K2ǫnx+ 4(19)2K4ǫ3nx

2.

From (40),

2D
3/4
A,m(eA,m(19x)2)1/4 + 6

√

DA,mv2
A,mx+ 6v2

A,mx+ 2eA,m(19x)2

n

≤ (e(6)n (K, 1) + e(6)n (K, z))ǫn
RA,m

n
.

Thus, from Proposition 6.3 in the Appendix, for all z > 0 and all m in Mn,

P

(

p∗(m) − 2DA,m

n
− e(6)n (K, 1)ǫn

RA,m

n
> e(6)n (K, z))ǫn

RA,m

n

)

≤ e−K2lm(1+z).

Let us now briefly explain how to deduce from this concentration inequalities the results
in expectation.
[MI]: Integration of the concentration inequality

Let ǫm = ǫnRA,m/n and f(m) = p∗(m) − 2DA,m/n− e
(6)
n (K, 1)ǫm, we have

E

(

sup
m∈Mn

(f(m))+

)

≤
∑

m∈Mn

E
(

(f(m))+
)

=
∑

m∈Mn

∫ ∞

0
P (f(m) > y) dy.

Since z 7→ g(z) = e
(6)
n (K, z)) is clearly a C1-diffeomorphism of R∗

+, this last integral is
equal to

∫ ∞

0
P (f(m) > ǫmg(y)) ǫmg

′(y)dy

For all K > 0, there exists a constant C > 0 such that g′(z) ≤ C(z−1/2 + 1 + z). From
Lemma 6.1, for all K > 1, n ≥ 2, there exists a constant C > 0 such that

E

(

sup
m∈Mn

(

p∗(m) − 2DA,m

n
− e(6)n (K, 1)ǫn

RA,m

n

)

+

)

≤

C
∑

m∈Mn

ǫnRA,me
−K2lm

(
∫ ∞

0
(z−1/2 + 1 + z)e−K2lmzdz

)

≤ Ce−K2(ln n)γ
.
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The last inequality comes from the fact that ǫn is bounded and K2lm ≥ c > 0 for all
n ≥ 2, K > 1. Take K = 14.75/(2

√
19 + 6) > 1 and choose n sufficiently large such that

6K2ǫn + 4(19)2K4ǫ3n ≤ 0.25, then e
(6)
n (K) ≤ 15 and (34) holds for all n sufficiently large.

It holds for all n provided that we enlarge C if necessary.
We obtain (35) with the same arguments.
Let us now turn to the result on the resampling estimator of p(m). Let K > 0, z > 0,
lm = ln,γ(Rm, Rm), x = K2lm(1 + z),

e(7)n (K, z) =
n

n− 1

(

16, 62K
√
x+ 6K2ǫnx+ 4(19.1)2K4ǫ2nx

2
)

,

From inequalities (40), we have

10.62D
3/4
A,m(eA,mx

2)1/4 + 6
√

v2
A,mDA,mx+ 6v2

A,mx+ 2eA,m(19.1x)2

n− 1

≤ (e(7)n (K, 1) + e(7)n (K, z))ǫn
RA,m

n

From inequalities (41) with x = K2lm(1 + z) and for all z > 0, for all m in Mn and all
z > 0

P

(

p∗(m) − p∗W (m) − e(7)n (K, 1)ǫn
RA,m

n
> e(7)n (K, z)ǫn

RA,m

n

)

≤ 2e−K2lm(1+z).

We use again the method of integration [MI] to prove that, for all K > 1, there exists a
constant C > 0 such that

E

(

sup
m∈Mn

(

p∗(m) − p∗W (m) − e(7)n (K, 1)ǫn
RA,m

n

)

+

)

≤ Ce−K2(ln n)γ
.

Take K = 17/16.62 > 1 and n ≥ 20 such that 6K2ǫn+4(19.1)2K4ǫ3n ≤ 2, then e
(7)
n (K, 1) ≤

20 and (36) holds for sufficiently large n. It holds in general provided that we enlarge C
if necessary.
We obtain (37) with the same arguments.
Let K > 0, lm,m′ = ln,γ(Rm, Rm′), z > 0, x = K2lm,m′(1 + z),

e(8)n (K, z) =
√

2K2z + 2K4ǫ2nx
2/9,

e
(8)
n (K) = e

(8)
n (K, 1), gK(z) = (e

(8)
n (K, z))2/e

(8)
n (K) and η = e

(8)
n (K, 1)ǫn.

4η
RA,m ∨RA,m′

n
+

8v2
A,m,m′x+ 4eA,m,m′x2/9

ηn

≤ 4
(

2e(8)n (K) + gK(z)
)

ǫn
RA,m ∨RA,m′

n
.

Thus from (43), for all z > 0, for all m, m′ in Mn and all K > 0,

P

(

δ(m,m′) − 8e(8)n (K)ǫn
RA,m ∨RA,m′

n
> ǫn

RA,m ∨RA,m′

n
gK(z)

)

≤ e−K2lm,m′ (1+z).

23



Thus

E

(

sup
(m,m′)∈M2

n

(

δ∗(m,m′) − 8e(8)n (K)ǫn
RA,m ∨RA,m′

n

)

+

)

≤
∑

(m,m′)∈M2
n

E

((

δ∗(m,m′) − 8e(8)n (K)ǫn
RA,m ∨RA,m′

n

)

+

)

=
∑

(m,m′)∈M2
n

∫ ∞

0
P

(

δ∗(m,m′) − 8e(8)n (K)ǫn
RA,m ∨RA,m′

n
> x

)

dx

Let x = ǫn
RA,m∨RA,m′

n gK(z). For all K > 0, for all n ≥ 2, there exists a constant C > 0

such that gK(z)′ ≤ C(1 + z). Thus, from Lemma 6.1, for all K >
√

2, there exists a
constant C > 0 such that

E

(

sup
(m,m′)∈M2

n

(

δ∗(m,m′) − 8e(8)n (K)ǫn
RA,m ∨RA,m′

n

)

+

)

≤ C
∑

(m,m′)∈M2
n

ǫn
RA,m ∨RA,m′

n
e−K2lm,m′

∫ ∞

0
(1 + z)e−K2lm,m′zdz ≤ Ce−K2(ln n)γ

.

Take K = 17/(8
√

2) >
√

2 and n sufficiently large to have 8
√

2K4ǫ2n/9 ≤ 3, then

8e
(8)
n (K, 1)) ≤ 20 and (38) holds for sufficiently large n. It holds in general provided

that we increase C if necessary. We can now turn to the proofs of the main results of this

part.

5.3 Proof of Theorem 3.1

Let us first assume that X1, ...,Xn are β-mixing. Let A∗
0, ..., A∗

p−1 be the random variables
given by Viennet’s Lemma in Section 2.3.1. Let (p(m), pW (m), δ(m,m′), p∗(m), p∗W (m),
DA,m, RA,m, δ∗(m,m′))(m,m′)∈(Mn)2 be the quantities defined in Section 5.1. Let us define
the events

Ωp =
⋂

m∈Mn

{

−25ǫn
RA,m

n
≤ p∗(m) − 2DA,m

n
≤ 15ǫn

RA,m

n

}

, (44)

Ω̃p =
⋂

m∈Mn

{

−25ǫn
RA,m

n
≤ p∗(m) − p∗W (m) ≤ 15ǫn

RA,m

n

}

Ωd =
⋂

(m,m′)∈Mn

{

δ(m,m′) ≤ 12ǫn

(

RA,m ∨RA,m′

n

)}

, (45)

ΩC =

(

⋂

m∈Mn

{p(m) = p∗(m)}
)

∩
(

⋂

m∈Mn

{pW (m) = p∗W (m)}
)

∩





⋂

(m,m′)∈Mn

{

δ(m,m′) = δ∗(m,m′)
}



 . (46)

From Lemmas 5.1 and 5.3, there exists a constant C > 0 such that

P(Ωc
p) ≤ Ce−

1

2
(ln n)γ

, P(Ω̃c
p) ≤ Ce−

1

2
(ln n)γ

, P(Ωc
d) ≤ Ce−(lnn)γ

, P(Ωc
C) ≤ pβq.
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Let Ω = Ωp ∩ Ω̃p ∩ Ωd ∩ ΩC . Recall that pen(m) = 2pW (m). On Ω, from inequality (6),
for all m in Mn,

‖s− s̃‖2 ≤ ‖s− ŝA,m‖2 + 2 (pW (m) − p(m)) − 2 (pW (m̂) − p(m̂)) + δ(m, m̂)

= ‖s− ŝA,m‖2 + 2 (p∗W (m) − p∗(m)) − 2 (p∗W (m̂) − p∗(m̂)) + δ∗(m, m̂)

≤ ‖s− ŝA,m‖2 + 62ǫn
RA,m

n
+ 42ǫn

RA,m̂

n
.

On Ω,

RA,m

n
= ‖s− ŝA,m‖2 +

2DA,m

n
− p∗(m) ≤ ‖s− ŝA,m‖2 + 25ǫn

RA,m

n
.

If 25ǫn < 1, on Ω,

‖s− s̃‖2 ≤ 1 + 37ǫn
1 − 25ǫn

‖s− ŝA,m‖2 +
42ǫn

1 − 25ǫn
‖s− s̃‖2.

Hence, if 67ǫn < 1,

P

(

‖s− s̃‖2 >
1 + 37ǫn
1 − 67ǫn

inf
m∈Mn

‖s − ŝA,m‖2

)

≤ Ce−
1

2
(ln n)γ

+ pβq.

Take n sufficiently large to have 67ǫn < 1 and 104/(1 − 67ǫn) ≤ 110. Then,

1 + 37ǫn
1 − 67ǫn

= 1 +
104

1 − 67ǫn
ǫn ≤ 1 + 110ǫn

and (11) holds for sufficiently large n. It holds in general provided that we increase the
constant C if necessary.

5.4 Proof of Theorem 3.2

Let us now assume that X1, ...,Xn are τ -mixing. Let A∗
0, ..., A∗

p−1 be the random variables
given by the τ -couling Lemma in Section 2.3.2. Let (p(m), pW (m), δ(m,m′), p∗(m),
p∗W (m), DA,m, RA,m, δ∗(m,m′))(m,m′)∈(Mn)2 be the quantities defined in Section 5.1. From
inequality (6), for all m in Mn,

‖s − s̃‖2 ≤ ‖s− ŝA,m‖2 + 2 (pW (m) − p(m)) − 2 (pW (m̂) − p(m̂)) + δ(m, m̂)

= ‖s− ŝA,m‖2 + 2

(

p∗W (m) − p∗(m) − 35ǫn
RA,m

n

)

+ 90ǫn
RA,m

n

+2

(

p∗(m̂) − p∗W (m̂) − 20ǫn
RA,m̂

n

)

+ 60ǫn
RA,m̂

n

+δ∗(m, m̂) − 20ǫn
RA,m ∨RA,m̂

n
+ 2(pW (m) − p∗W (m))

+2(p∗(m) − p(m) + p∗W (m̂) − pW (m̂) + p(m̂) − p∗(m̂))

+δ(m, m̂) − δ∗(m, m̂).

For all m in Mn,

RA,m

n
=

‖s− ŝA,m‖2

1 − 35ǫn
+

(1 − 35ǫn)RA,m/n− ‖s− ŝA,m‖2

1 − 35ǫn

=
‖s− ŝA,m‖2

1 − 35ǫn
+

2DA,m/n− 35ǫnRA,m/n− ‖sm − ŝA,m‖2

1 − 35ǫn
. (47)
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In the control of ‖s− s̃‖2, we replace RA,m/n and RA,m̂/n by the expressions obtained in
(47) in the terms 90ǫnRA,m/n and 60ǫnRA,m̂/n. Assume that 35ǫn < 1,

1 − 95ǫn
1 − 35ǫn

‖s− s̃‖2 ≤ 1 + 55ǫn
1 − 35ǫn

inf
m∈Mn

‖s− ŝA,m‖2

+
150ǫn

1 − 35ǫn
sup

m∈Mn

(

2DA,m

n
− p∗(m) − 35ǫn

Rm

n

)

+

4 + 10ǫn
1 − 35ǫn

sup
m∈Mn

|p∗(m) − p(m))| + sup
m,m′∈Mn

(

δ∗(m,m′) − 20ǫn

(

RA,m ∨RA,m′

n

))

+2 sup
m∈Mn

(

p∗W (m) − p∗(m) − 35ǫn
Rm

n

)

+ 4 sup
m∈Mn

|pW (m) − p∗W (m)|

+2 sup
m∈Mn

(p∗(m) − p∗W (m) − 15ǫnfracRmn) + sup
m,m′∈(Mn)2

δ(m,m′) − δ∗(m,m′).

We take the expectation in this last inequality and we use inequalities (26), (27), (28),
(35), (36), (37) and (38) to obtain that, when 95ǫn < 1, there exists a constant C > 0
such that

‖s− s̃‖2 ≤ 1 + 55ǫn
1 − 95ǫn

inf
m∈Mn

‖s− ŝA,m‖2 +C
(

τqMCn + e−
1

2
(ln n)γ

)

Take n sufficiently large to have 95ǫn < 1 and 150/(1 − 95ǫn) ≤ 160. Then,

1 + 55ǫn
1 − 95ǫn

= 1 +
150

1 − 95ǫn
ǫn ≤ 1 + 160ǫn

and (12) holds for sufficiently large n. It holds in general provided that we increase the
constant C if necessary.

5.5 Proof of Theorem 3.3

Assume that X1, ...,Xn are β-mixing and let A∗
0, ..., A

∗
p−1 be the random variables built

with Viennet’s Lemma in Section 2.3.1. Let (p(m), pW (m), δ(m,m′), p∗(m), p∗W (m),
DA,m, RA,m, δ∗(m,m′))(m,m′)∈(Mn)2 be the quantities defined in Section 5.1. Let ΩT =
Ωp ∩Ωd ∩ΩC where Ωp, Ωd and ΩC are defined respectively in (44), (45) and (46). Recall
that there exists a constant C > 0 such that

P(Ωc
p) ≤ Ce−

1

2
(ln n)γ

, P(Ωc
d) ≤ Ce−(ln n)γ

, P(Ωc
C) ≤ pβq.

If cn ≤ 0, there is nothing to prove, hence, we can assume that cn > 0 and thus that
75ǫ∗n < δ < 1.
m̂ minimizes by definition the following criterion

Crit(m) = ‖ŝA,m‖2 − 2PA(ŝA,m) + pen(m) + ‖s‖2 + 2νA(smo)

= ‖ŝA,m‖2 − 2P (ŝA,m) + ‖s‖2 − 2νA(ŝA,m) + 2νA(smo) + pen(m)

= ‖ŝA,m − s‖2 − 2νA(ŝA,m − sm) + 2νA(smo − sm) + pen(m)

= ‖ŝA,m − s‖2 − 2‖ŝA,m − sm‖2 + δ(mo,m) + pen(m)

= ‖s− sm‖2 − p(m) + δ(mo,m) + pen(m)

since p(m) = ‖sm − ŝA,m‖2 = νA(ŝA,m − sm). Thus, on ΩT , m̂ minimizes the following
criterion

Crit(m) = ‖s− sm‖2 − p∗(m) + δ∗(m,mo) + pen(m)
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For all m in Mn, we have 0 ≤ pen(m) < (2− δ)DA,m/n and RA,mo ≤ RA,m. Thus, for all
m in Mn, on ΩT

Crit(m) ≥ ‖s − sm‖2 − 2DA,m

n
+

(

2DA,m

n
− p∗(m)

)

+ δ∗(m,mo)

≥ (1 − 27ǫn)‖s − sm‖2 − (1 + 27ǫn)
2DA,m

n
≥ − (1 + 27ǫn)

2DA,m

n

Crit(m) ≤ ‖s − sm‖2 − (δ − 74ǫn)
DA,m

n
.

If DA,m < cnDA,m∗, then

Crit(m) ≥ − (1 + 27ǫn)
2DA,m

n
> − (1 + 27ǫn) cn

2DA,m∗

n

≥ −(δ − 74ǫn − h∗n)
DA,m∗

n
≥ Crit(m∗).

Since Crit(m̂) ≤ Crit(m∗), DA,m̂ ≥ cnDA,m∗.
It follows that, on ΩT ,

‖s− s̃‖2 =
RA,m̂

n
+

(

p(m̂) − 2DA,m̂

n

)

≥ (1 − 25ǫn)
RA,m̂

n

≥ (1 − 25ǫn)
2DA,m̂

n
≥ (1 − 25ǫn)cn

2DA,m∗

n
.

Moreover, on ΩT ,

inf
m∈Mn

‖s − ŝA,m‖2 ≤ inf
m∈Mn

RA,m

n
(1 + 15ǫn) ≤ RA,mo

n
(1 + 15ǫn).

Thus

‖s− s̃‖2 ≥ (1 − 25ǫn)cn
2DA,m∗

n
≥ 2cn

(

1 − 25ǫn
1 + 15ǫn

)

DA,m∗

RA,mo

inf
m∈Mn

‖s− ŝA,m‖2.

Since ǫn < 1/75, we have 2(1 − 25ǫn)(1 + 15ǫn) ≥ 2(1 − 1/3)(1 + 1/5) ≥ 1. This conclude
the proof of (13).

5.6 Proof of Theorem 3.4

Assume that X1, ...,Xn are τ -mixing. Let A∗
0, ..., A∗

p−1 be the random variables given
by the τ -couling Lemma in Section 2.3.2. Let (p(m), pW (m), δ(m,m′), p∗(m), p∗W (m),
DA,m, RA,m, δ∗(m,m′))(m,m′)∈(Mn)2 be the quantities defined in Section 5.1. In order to
prove inequality (14) observe that, for all m in Mn, since pen(m) ≥ 0, and ‖s − sm‖2 −
35ǫnRA,m/n ≥ −35ǫnDA,m/n

Crit(m) ≥ ‖s− sm‖2 +

(

−p∗(m) + 15ǫn
RA,m

n

)

+ (p∗(m) − p(m)) − 35ǫn
RA,m

n

+

(

δ∗(m,mo) + 20ǫn
RA,m

n

)

+ (δ(m,mo) − δ∗(m,mo))

= −(1 + 35ǫn)
2DA,m

n
+

(

2DA,m

n
− p∗(m) + 15ǫn

RA,m

n

)

+ (p∗(m) − p(m))

+

(

δ∗(m,mo) + 20ǫn
RA,m

n

)

+ (δ(m,mo) − δ∗(m,mo)).
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Therefore,

− 2DA,m̂

n
(1 + 35ǫn) ≤ Crit(m̂) + sup

m∈Mn

(

p∗(m) − 2DA,m

n
− 15ǫn

RA,m

n

)

+ sup
(m,m′)∈M2

n

(

δ∗(m,m′) − 20ǫn
RA,m ∨RA,m′

n

)

+ sup
m∈Mn

(p(m) − p∗(m)) + sup
m,m′∈Mn

(δ(m,m′) − δ∗(m,m′)).(48)

Since, for all m in Mn, pen(m) ≤ (2 − δ)DA,m/n,

Crit(m) ≤ ‖s− sm‖2 +

(

2DA,m

n
− p∗(m)

)

− δ
DA,m

n
+ (p∗(m) − p(m)) + δ(m,mo). (49)

Since Crit(m̂) ≤ Crit(m∗), from (49) and (26),

E (Crit(m̂)) ≤ E (Crit(m∗)) ≤ ‖s− sm∗‖2 − δ
DA,m∗

n
+ 4τqMCn

≤ −(δ − h∗n)
DA,m∗

n
+ 4τqMCn ≤ −c′n(1 + 35ǫn)

2DA,m∗

n
+ 4τqMCn.

Take the expectation in (48) and use inequalities (26), (28), (34) and (38) to obtain (14).
We deduce from (14) that there exists a constant C > 0 such that

E
(

‖s− s̃‖2
)

≥ 2

n
E (DA,m̂) ≥ 2c′n

DA,m∗

n
− C(e−

1

2
(ln n)γ

+ τqMCn)

≥ 2
c′n
ho

n

Rmo

n
− C(e−

1

2
(ln n)γ

+ τqMCn).

The proof of (15) is conclude since

E

(

inf
m∈Mn

‖s− ŝA,m‖2

)

≤ inf
m∈Mn

E
(

‖s− ŝA,m‖2
)

=
Rmo

n
+ CτqMCn.

5.7 Proof of Theorem 3.5

If cn = ∞, there is nothing to prove. Thus we can assume that cn < ∞ and thus that
1 + δ − 27ǫn > 0. Let us first assume that X1, ...,Xn are β-mixing and let A∗

0, ...A
∗
p−1

be the random variables given by Viennet’s Lemma in Section 2.3.1. Let (p(m), pW (m),
δ(m,m′), p∗(m), p∗W (m), DA,m, RA,m, δ∗(m,m′))(m,m′)∈(Mn)2 be the quantities defined in
Section 5.1. Recall that m̂ minimizes over Mn the following criterion.

Crit(m) = ‖s− sm‖2 − p(m) + δ(m,mo) + pen(m).

We keep the notations Ωp, Ωd and ΩC defined by (44), (45), (46). We introduce the event

Ωpen =
⋂

m∈Mn

{

4DA,m

n
+ δ

RA,m

n
≤ pen(m) ≤ 4DA,m

n
+ δ̄

RA,m

n

}

and let Ω = Ωp ∩ Ωd ∩ ΩC ∩ Ωpen. Since RA,mo ≤ RA,m, on Ω,

Crit(m) ≥ (1 + δ − 12ǫn)
RA,m

n
+

(

2DA,m

n
− p∗(m)

)

≥ (1 + δ − 27ǫn)
RA,m

n
≥ (1 + δ − 27ǫn)

2DA,m

n
.

Crit(m) ≤ (1 + δ̄ + 37ǫn)
RA,m

n
.
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If DA,m > cnRA,mo ,

Crit(m) ≥ (1 + δ − 27ǫn)
2DA,m

n
> 2(1 + δ − 27ǫn)cn

RA,mo

n

≥ (1 + δ̄ + 37ǫn)
RA,mo

n
≥ Crit(mo)

Since Crit(m̂) ≤ Crit(mo), this implies that DA,m̂ ≤ cnRA,mo. Moreover, from (6), for all
m in Mn

‖s− s̃‖2 ≤ ‖s− ŝA,m‖2 + (pen(m) − 2p∗(m)) + (2p∗(m̂) − pen(m̂)) + δ∗(m, m̂)

≤ ‖s− ŝA,m‖2 + 2

(

2DA,m

n
− p∗(m)

)

+ (δ̄ + 12ǫn)
RA,m

n

+2

(

p∗(m̂) − 2DA,m̂

n

)

+ (−δ + 12ǫn)
RA,m̂

n

≤ ‖s− ŝA,m‖2 + (37ǫn + δ̄)
RA,m

n
+ (27ǫn − δ)

RA,m̂

n
.

For all m in Mn, on Ω,

‖s− ŝA,m‖2 =
RA,m

n
+

(

p∗(m) − 2DA,m

n

)

≥ (1 − 25ǫn)
RA,m

n
.

Assume that 25ǫn < 1, then, for all m ∈ Mn,

‖s− s̃‖2 ≤ ‖s− ŝA,m‖2

(

1 +
37ǫn + δ̄

1 − 25ǫn

)

+
27ǫn − δ

1 − 25ǫn
‖s− s̃‖2.

This proves (16) for sufficiently large n. (16) holds in general provided that we increase
the constant C if necessary.

5.8 Proof of Theorem 3.6

Assume that X1, ...,Xn τ -mixing and let A∗
0, ..., A

∗
p−1, be the random variables given by

the τ -mixing Lemma in Section 2.3.2. Let (p(m), pW (m), δ(m,m′), p∗(m), p∗W (m), DA,m,
RA,m, δ∗(m,m′))(m,m′)∈(Mn)2 be the quantities defined in Section 5.1. Recall that

E

(

sup
m∈Mn

(

4DA,m

n
+ δ

RA,m

n
− pen(m)

)

+

)

≤ en,

E

(

sup
m∈Mn

(

pen(m) − 4DA,m

n
− δ̄

RA,m

n

)

+

)

≤ en.

For all m in Mn, we have,

RA,m

n
= Crit(m) +

(

p∗(m) − 2DA,m

n
− 15ǫn

RA,m

n

)

+

(

4DA,m

n
− pen(m) + δ

RA,m

n

)

−
(

δ∗(m,mo) + 20ǫn
RA,m

n

)

+ (p(m) − p∗(m))

+(35ǫn − δ)
RA,m

n
+ (δ∗(m,mo) − δ(m,mo)).
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Therefore

(1 + δ − 35ǫn)
RA,m̂

n
≤ Crit(mo) + sup

m∈Mn

(

p∗(m) − 2DA,m

n
− 15ǫn

RA,m

n

)

+ sup
m∈Mn

(

4DA,m

n
− pen(m) + δ

RA,m

n

)

+ sup
(m,m′)∈M2

n

(

δ(m,m′) − 20ǫn
RA,m ∨RA,m′

n

)

+ sup
(m,m′)∈M2

n

(δ∗(m,m′) − δ(m,m′))

+ sup
m∈Mn

|p(m) − p∗(m)|. (50)

On the other hand, for all m in Mn, Crit(m) = ‖s − sm‖2 − p(m) + δ(mo,m) + pen(m),
thus

Crit(mo) ≤ (1 + δ̄)RA,mo +

(

2DA,mo

n
− p∗(mo)

)

+ (p∗(mo) − p(mo))

+pen(mo) −
4DA,mo

n
− δ̄

RA,mo

n
.

Since E
(

pen(mo) − 4DA,mo/n− δ̄RA,mo/n
)

≤ en and 2DA,mo/n = E(p∗(mo)), from in-
equality (26), there exists a constant C > 0 such that

E (Crit(mo)) ≤ (1 + δ̄)
RA,mo

n
+CτqMCn + en.

For all m in Mn, 2DA,m ≤ RA,m. Take the expectation in (50), from inequalities (26),
(28), (34) and (38), there exists an absolut constant C > 0 such that

E (Dm̂) ≤ cn

(

Rmo + Cn
[

τqMCn + e−
1

2
(ln n)γ

+ en

])

.

This proves inequality (17).

From (6), for all m in Mn,

‖s− s̃‖2 ≤ ‖s − ŝA,m‖2 + 2

(

2DA,m

n
− p∗(m) − 35ǫn

RA,m

n

)

+

(

δ∗(m, m̂) − 20ǫn
RA,m ∨RA,m̂

n

)

+2

(

−2DA,m̂

n
+ p∗(m̂) − 15ǫn

Rm̂

n
)

)

+

(

−pen(m̂) + 2
2Dm̂

n
+ δ

RA,m̂

n

)

+

(

pen(m) − 2
2DA,m

n
− δ̄

RA,m

n

)

+(90ǫn + δ̄)
RA,m

n
+ (50ǫn − δ)

RA,m̂

n
+4 sup

m∈Mn

|p(m) − p∗(m)| + sup
(m,m′)∈M2

n

(δ(m,m′) − δ∗(m,m′)). (51)
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Assume that 35ǫn < 1, for all m in Mn, we have

RA,m

n
=

(1 − 35ǫn)RA,m

n
− ‖s− ŝA,m‖2

1 − 35ǫn
+

‖s− ŝA,m‖2

1 − 35ǫn

≤ 1

1 − 35ǫn

(

‖s− ŝA,m‖2 +
2DA,m

n
− p(m) − 35ǫn

RA,m

n

)

≤ 1

1 − 35ǫn

(

‖s− ŝA,m‖2 +
2DA,m

n
− p∗(m) − 35ǫn

RA,m

n
+ p(m) − p∗(m)

)

We use this expression in the terms (90ǫn + δ̄)RA,m/n and (50ǫn − δ)RA,m̂/n of inequality
(51). We deduce that, for all m in Mn,

1 + δ − 85ǫn
1 − 35ǫn

‖s− s̃‖2 ≤ 1 + δ̄ + 55ǫn
1 − 35ǫn

inf
m∈Mn

‖s− ŝA,m‖2

+
2 + 70ǫn + δ̄ − δ

1 − 35ǫn
sup

m∈Mn

(

2DA,m

n
− p∗(m) − 35ǫn

RA,m

n

)

+ sup
m∈Mn

(

pen(m) − 4DA,m

n
− δ̄

RA,m

n

)

+ sup
m∈Mn

(

4DA,m

n
+ δ)

RA,m̂

n
− pen(m)

)

+2 sup
m∈Mn

(

p∗(m) − 2DA,m

n
− 15ǫn

RA,m

n
)

)

+ sup
(m,m′)∈M2

n

(

δ∗(m,m′) − 20ǫn
RA,m ∨RA,m′

n

)

+
4 + δ̄ − δ

1 − 35ǫn
sup

m∈Mn

|p(m) − p∗(m)| + sup
(m,m′)∈M2

n

(δ(m,m′) − δ∗(m,m′)).

We take the expectation in this last inequality and we deduce that, for sufficiently large
n, (18) comes from (26), (28), (34), (35) and (38). It holds in general provided that we
enlarge the constant C if necessary.

5.9 Proof of Corollaries 4.1 and 4.3.

In [Ler09a], we obtained the following inequalities. If there exists θ > 1 such thatX1, ...,Xn

are arithmetically [AR(θ)], β-mixing, there exists constants cv , ce, cD, cM such that, for
all m, m′ in Mn,

v2
A,m,m′ ≤ cv(dm ∨ dm′)3/4, b2A,m,m′ ≤ ce(dm ∨ dm′),DA,m ≤ cDdm.

The constants cv and cD depend on the mixing coefficients and are unknown in practice.
Without loss of generality, assume that γ ≤ 3/2 in [M5].
Let us first assume that (X1, ...,Xn) are arithmetically β-mixing. Choose p ≥ √

n(lnn)2/2,
q ≥ √

n(lnn)−2/2 such that 2pq = n. Hence, there exists a constant cM such that
pβq ≤ cM (log n)2(θ+2)n−θ/2. For all m, m′ in Mn,

eA,m,m′ ≤ 2ce
dm ∨ dm′

(ln n)4
≤ 2ce
c′D

DA,m ∨DA,m′

(lnn)4
≤ 2ce
c′D

(ln n)−1RA,m ∨RA,m′

(lnn)2γ
.

When dm ∨ dm′ ≤ rn(lnn)4γ , then

v2
A,m,m′ ≤ cv(dm ∨ dm′)3/4 ≤ cv(rn)−1/4 Rn

(lnn)γ
≤ cv(rn)−1/4RA,m ∨RA,m′

(lnn)γ
.
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When dm ∨ dm′ ≥ rn(lnn)4γ , then

v2
A,m,m′ ≤ cv(dm ∨ dm′)3/4 ≤ cv

c′D

DA,m ∨DA,m′

(dm ∨ dm′)1/4
≤ cv
c′D

RA,m ∨RA,m′

r
1/4
n (lnn)γ

.

Therefore, [M1]-[M5] and [AR(θ)] with θ > 1 imply [V’] with

ǫ∗n = C
(

(lnn)−1/4 ∧ r−1/8
n

)

.

Let us now assume that there exists θ > 0 such that the data X1, ...,Xn are geometrically
[GEO(θ)] β-mixing. We still assume [M1]-[M5] on the models. Let p ≥ n(lnn)−2/2,
q ≥ (lnn)2/2 such that 2pq = n. Then there exist constants ce, cM such that, for all m,
m′ in Mn,

pβq ≤ cM
n

(lnn)2
e−

θ
2
(ln n)2 ,

eA,m,m′ ≤ ce
(lnn)4

n
(dm ∨ dm′) ≤ ce

c′D

(ln n)4+2γ

n

RA,m ∨RA,m′

(ln n)2γ
.

5.10 Proof of Corollary 4.4.

It is a classical result (see for example Birgé & Massart [BM97]) that the collection of
wavelet spaces Mn satisfies the following assumptions

[T1] for all m ∈ Mn, 2Jm ≤ n;
[T2] there exists a constant Φ such that

∀m,m′ ∈ Mn,∀t ∈ Sm,∀t′ ∈ Sm′ , ‖t+ t′‖∞ ≤ Φ2(Jm∨Jm′ )/2‖t+ t′‖2;

[T3] |Mn| ≤ lnn/ ln 2.

Under these assumptions, the following lemma hold.

Lemma 5.4 Let θ > 2 and assume that X1, ...,Xn are arithmetically [AR(θ)] τ -mixing
and let u = 3/(1 + θ) ∧ 1. Let Mn be a collection of regular wavelet spaces [W]. There
exist constants cD, cv, cb such that, for all m, m′ in Mn,

DA,m ≤ cD2Jm, v2
A,m,m′ ≤ cv

(

2Jm∨Jm′
)

1

2
(1+u)

, b2A,m,m′ ≤ cb2
Jm∨Jm′ .

Moreover, MCn ≤ cTn
2.

Without loss of generality, assume that γ ≤ 3/2 in [T5] and recall that there exists
θ > 2 such that X1, ...,Xn are arithmetically [AR(θ)] τ -mixing. Choose p ≥ √

n(lnn)2/2,

q ≥ √
n(lnn)−2/2 such that 2pq = n. Then, u < 1 and there exists constants c

(2)
T , ce such

that

τqMCn ≤ c
(2)
T

(lnn)2(1+θ)

n(θ−3)/2
, eA,m,m′ ≤ ce

lnn

RA,m ∨RA,m′

(lnn)2γ
.

When 2Jm∨Jm′ ≤ rn(ln n)
2γ

1−u ,

v2
A,m,m′ ≤ cv

(

rn(lnn)
2γ

1−u

)
1

2
(1+u)

≤ cvr
− 1−u

2
n

Rn

(lnn)γ
≤ cv

RA,m ∨RA,m′

r
1−u

2
n (lnn)γ

.

When 2Jm∨Jm′ ≥ rn(ln n)
2γ

1−u ,

v2
A,m,m′ ≤ cv

c′D

DA,m ∨DA,m′

(

rn(lnn)
2γ

1−u

)
1−u

2

≤ cv
c′D
r
− 1−u

2
n

RA,m ∨RA,m′

(lnn)γ
.

We conclude the proof as in the β-mixing case.
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5.11 Proof of Lemma 5.4.

Let us first recall the following lemma, obtained in [Ler09a] as a consequence of the
covariance inequality proved by Dedecker & Prieur [DP05] for τ -mixing sequences.

Lemma 5.5 Let X,Y be two identically distributed real valued random variables, with
common density s in L2(µ). There exists a constant cτ and a random variable b(σ(X), Y )

such that E(b(σ(X), Y )) = cτ (τ(σ(X), Y ))1/3 such that, for all Lipschitz functions f and
all h in BV

|Cov(f(X), h(Y ))| ≤ ‖h‖BV E (|f(X)|b(σ(X), Y )) ≤ cτ ‖h‖BV ‖f‖∞ (τ(σ(X), Y ))1/3 .
(52)

It comes from this Lemma and inequalities (20, 21, 22) that

DA,m =
1

q

∑

(j,k)∈m

Var

(

q
∑

i=1

ψj,k(Xi)

)

≤ 2
∑

(j,k)∈m

q
∑

l=1

(q + 1 − l)|Cov(ψj,k(X1), ψj,k(Xl))|

≤ 2

q

Jm
∑

j=0

∑

k∈Z

q
∑

l=1

‖ψj,k‖BV E (|ψj,k(X1)|b(σ(X1),Xl))

≤ 2cτKBV

Jm
∑

j=0

2j/2

∥

∥

∥

∥

∥

∑

k∈Z

|ψj,k|
∥

∥

∥

∥

∥

∞

q
∑

l=1

τ
1/3
l−1

≤ 4

(

cτAK∞KBV

∞
∑

l=0

τ
1/3
l

)

2Jm.

When θ > 2, the series
∑∞

l=0 τ
1/3
l is convergent and we obtain the inequality on DA,m with

cD = 4
(

cτAK∞KBV
∑∞

l=0 τ
1/3
l

)

.

As the models are nested, we only have to compare, for all m in Mn, b2A,m and v2
A,m with

2Jm. From [T2], b2m ≤ Φ22Jm, this proves the inequality on b2A,m,m′ with cb = Φ2.
For all t in Bm,

qVar(Lq(t)(A0)) ≤ 2

q
∑

l=1

|Cov(t(X1), t(Xl))|. (53)

Let X∗
l be a random variable, independent of X1, with law P , such that

E (|Xl −X∗
l |) ≤ τl−1.

This random variable can be defined thanks to the coupling lemma of Dedecker & Prieur
[DP05] (section 7.1).

|Cov(t(X1), t(Xl))| = |Cov(t(X1), t(Xl) − t(X∗
l ))|

≤
√

Var(t(X1))E
(

(t(Xl) − t(X∗
l ))2

)

≤
√

2Var(t(X1)) ‖t‖∞ E
(

|t(Xl) − t(X∗
l )|
)

≤
√

2‖s‖ ‖t‖2
∞ Lip(t)τl−1.
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Since t belongs to Bm, ‖t‖2
∞ ≤ Φ22Jm . Moreover, let aj,k =

∫

R
tψj,kdµ, then

Lip(t) = sup
x 6=y∈R

|t(x) − t(y)|
|x− y| ≤

Jm
∑

j=0

sup
x 6=y∈R

∑

k∈Z

|aj,k|
|ψj,k(x) − ψj,k(y)|

|x− y|

≤ 2AKL

Jm
∑

j=0

23j/2 sup
k∈Z

|aj,k|. (54)

The last inequality holds since, for all x, y in R there is less than 2A indices k in Z such
that |ψj,k(x)−ψj,k(y)| 6= 0. Since t belongs to Bm,

∑

(j,k)∈m a2
j,k ≤ 1, in particular, for all

j, supk∈Z |aj,k| ≤ 1. Thus, there exists a constant c such that Lip(t) ≤ c23Jm/2. Hence,
there exists a constant c such that, for all t in Bm and all l in N

∗

|Cov(t(X1), t(Xl))| ≤ c25Jm/4√τl−1.

Remark that we also have

|Cov(t(X1), t(Xl))| ≤ ‖t‖∞ ‖t‖‖s‖ ≤ c2Jm/2.

Recall that u = 3/(1 + θ), there exist constants c, which may vary from line to line such
that

q
∑

l=1

|Cov(t(X1), t(Xl))| ≤ c2Jm/2
∞
∑

l=1

(23Jm/4√τl−1 ∧ 1)

≤ c2Jm/2
∞
∑

l=1

(23Jm/4l−(1+θ)/2 ∧ 1)

≤ c2Jm/2





2uJm/2

∑

l=1

1 +

∞
∑

l=2uJm/2

23Jm/4l−(1+θ)/2





≤ c2
Jm
2

(1+u).

We deduce the inequality on v2
A,m,m′ from (53) and this last inequality.

It remains to control MCn, recall that

MCn =
∑

m∈Mn





∥

∥

∥

∥

∥

∑

λ∈m

|ψλ|
∥

∥

∥

∥

∥

∞

sup
λ∈m

Lipd(ψλ) + ‖s‖|Mn| sup
t∈Bm

Lip(t)



 .

From (20, 21), for all m in Mn,

∥

∥

∥

∥

∥

∑

λ∈m

|ψλ|
∥

∥

∥

∥

∥

∞

≤
√

2√
2 − 1

AK∞2Jm/2, sup
λ∈m

Lipd(ψλ) ≤ KL23Jm/2.

From (54), for all m in Mn, there exists a constant c such that supt∈Bm
Lip(t) ≤ c23Jm/2.

Since Card(Mn) ≤ lnn/ ln 2, and 2maxm∈Mn Jm ≤ n, there exists a constant cM such that
MCn ≤ cMn

2.
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6 Appendix

In this section, we recall some technical lemmas proved in [Ler09b].

Lemma 6.1 For all α ≥ 0, K > α+ 1,

Σ(K,α) =
∑

k∈N

∑

m∈Mk
n

(1 + k)αe−K[ln(1+Card(Mk
n))+ln(1+k)] <∞.

For all m in Mn, let lm = ln,γ(RA,m, RA,m). Then, for all α ≥ 0, for all K >
√

(1 + α)/2,
∑

m∈Mn

Rα
A,me

K2lm ≤ Σ(K2, α)e−K2(ln n)γ
.

For all m in Mn, let lm,m′ = ln,γ(RA,m, RA,m′). Then, for all α ≥ 0, α′ ≥ 0 and all
K >

√
1 + α ∨ α′,

∑

(m,m′)∈(Mn)2

Rα
A,mR

α′

A,m′e−K2lm,m′ = Σ(K2, α)Σ(K2, α′)e−K2(ln n)γ
.

Lemma 6.2 Let n be an integer and let X1, ...,Xn be real valued, identically distributed
random variables with common law P . Let (tλ)λ∈Λ be a collection of functions in L2(µ).
Let p(Λ) =

∑

λ∈Λ(νn(tλ))2. Let (W1, ...,Wn) be a resampling scheme, let W̄n =
∑n

i=1Wi/n
and let v2

W = Var(W1 − W̄n). Let

pW (Λ) = (v2
W )−1

∑

λ∈Λ

E
W
(

(νW
n (tλ))2

)

,

T =
∑

λ∈Λ(tλ − Ptλ)2 and

U =
1

n(n− 1)

n
∑

i6=j=1

∑

λ∈Λ

(tλ(Xi) − Ptλ)(tλ(Xj) − Ptλ).

Then

p(Λ) =
1

n
PnT +

n− 1

n
U, pW (Λ) =

1

n
PnT − 1

n
U, p(Λ) − pW (Λ) = U.

Proposition 6.3 Let X,X1, ...,Xn be i.i.d random variables taking value in a measurable
space (X,X ) with common law P . Let B be a symetric class of functions bounded by b. Let
Z = supt∈B(νnt), ǫ = b2/n, v2 = supt∈B Var(t(X)), D = E

(

supt∈B(t(X) − Pt)2
)

. For all
x > 0, we have

P

(

Z2 − D

n
>
D3/4(ǫ(19x)2)1/4 + 3

√
Dv2x+ 3v2x+ ǫ(19x)2

n

)

≤ e−x.

P

(

Z2 − D

n
< −8D3/4(ǫx2)1/4 + 7.61

√
v2Dx+ ǫ(40.25x)2

n

)

≤ 2.8e−x.

Lemma 6.4 Let X,X1, ...,Xn be i.i.d random variables taking value in a measurable space
(X,X ) with common law P . Let µ be a measure on (X,X ) and let (tλ)λ∈Λ be a set of func-
tions in L2(µ). Let B = {t =

∑

λ∈Λ aλtλ,
∑

λ∈Λ a
2
λ ≤ 1}, D = E

(

supt∈B(t(X) − Pt)2
)

,
v2 = supt∈B Var(t(X)), b = supt∈B ‖t‖∞ and ǫ = b2/n. Let

U =
1

n(n− 1)

n
∑

i6=j=1

∑

λ∈Λ

(tλ(Xi) − Ptλ)(tλ(Xj) − Ptλ).
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Then the following inequality holds

∀x > 0, P

(

U >
5.31D3/4(ǫx2)1/4 + 3

√
v2Dx+ 3v2x+ ǫ(19.1x)2

n− 1

)

≤ 2e−x.

∀x > 0, P

(

U < −9D3/4(ǫx2)1/4 + 7.61
√
v2Dx+ ǫ(40.3x)2

n− 1

)

≤ 3.8e−x.

Lemma 6.5 Let X,X1, ...,Xn be i.i.d random variables taking value in a measurable space
(X,X ) with common law P . Let µ be a measure on (X,X ) and let (ψλ)λ∈Λ be an or-
thonormal system in L2(µ). Let L be a linear functional in L2(µ) and let B = {t =
∑

λ∈Λ aλL(ψλ),
∑

λ∈Λ a
2
λ ≤ 1}, v2 = supt∈B Var(t(X)), b = supt∈B ‖t‖∞ and ǫ = b2/n.

Let s be a function in S, the linear space spanned by the functions (tλ)λ∈Λ and let η > 0.
Then the following inequality holds

∀x > 0, P

(

νn(L(s)) >
η

2
‖s‖2 +

2v2x+ ǫx2/9

ηn

)

≤ e−x.
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