Espace des modules de certains polyèdres projectifs miroirs
Résumé
A projective mirror polyhedron is a projective polyhedron endowed with reflections across its faces. We construct an explicit diffeomorphism between the moduli space of a mirror projective polyhedron with fixed dihedral angles in $(0,\frac{\pi}{2}]$, and the union of $n$ copies of $\mathbb{R}^d$, when the polyhedron has the combinatorics of an \emph{ecimahedron}, an infinite class of combinatorial polyhedra we introduce here. Moreover, the integers $n$ and $d$ can be computed explicitly in terms of the combinatorics and the fixed dihedral angles.
Domaines
Topologie géométrique [math.GT]Origine | Fichiers produits par l'(les) auteur(s) |
---|