Metastability of reversible condensed zero range processes on a finite set - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2009

Metastability of reversible condensed zero range processes on a finite set

Résumé

Let $r: S\times S\to \bb R_+$ be the jump rates of an irreducible random walk on a finite set $S$, reversible with respect to some probability measure $m$. For $\alpha >1$, let $g: \bb N\to \bb R_+$ be given by $g(0)=0$, $g(1)=1$, $g(k) = (k/k-1)^\alpha$, $k\ge 2$. Consider a zero range process on $S$ in which a particle jumps from a site $x$, occupied by $k$ particles, to a site $y$ at rate $g(k) r(x,y)$. Let $N$ stand for the total number of particles. In the stationary state, as $N\uparrow\infty$, all particles but a finite number accumulate on one single site. We show in this article that in the time scale $N^{1+\alpha}$ the site which concentrates almost all particles evolves as a random walk on $S$ whose transition rates are proportional to the capacities of the underlying random walk.
Fichier principal
Vignette du fichier
bl3.pdf (247.19 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00425463 , version 1 (21-10-2009)

Identifiants

  • HAL Id : hal-00425463 , version 1

Citer

Johel Beltran, Claudio Landim. Metastability of reversible condensed zero range processes on a finite set. 2009. ⟨hal-00425463⟩
65 Consultations
146 Téléchargements

Partager

More