
METASTABILITY OF REVERSIBLE CONDENSED ZERO

RANGE PROCESSES ON A FINITE SET
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Abstract. Let r : S × S → R+ be the jump rates of an irreducible random
walk on a finite set S, reversible with respect to some probability measure m.
For α > 1, let g : N → R+ be given by g(0) = 0, g(1) = 1, g(k) = (k/k − 1)α,
k ≥ 2. Consider a zero range process on S in which a particle jumps from a
site x, occupied by k particles, to a site y at rate g(k)r(x, y). Let N stand for
the total number of particles. In the stationary state, as N ↑ ∞, all particles
but a finite number accumulate on one single site. We show in this article
that in the time scale N1+α the site which concentrates almost all particles
evolves as a random walk on S whose transition rates are proportional to the
capacities of the underlying random walk.

1. Introduction

Fix a finite state space S of cardinality κ ≥ 2 and consider an irreducible con-
tinuous time random walk {Xt : t ≥ 0} on S which jumps from x to y at some rate
r(x, y). Assume that this dynamics is reversible with respect to some probability
measure m on S: m(x)r(x, y) = m(y)r(y, x), x, y ∈ S. Denote by capS the capacity
associated to this random walk: For two disjoint proper subsets A, B of S,

capS(A, B) = inf
f∈B(A,B)

1

2

∑

x,y∈S

m(x) r(x, y) {f(y) − f(x)}2 ,

where B(A, B) stands for the set of functions f : S → R equal to 1 at A and equal
to 0 at B. When A = {x}, B = {y}, we represent capS(A, B) by capS(x, y).

Let M⋆ be the maximum value of the probability measure m: M⋆ = max{m(x) :
x ∈ S} and denote by S⋆ the sites where m attains its maximum value: S⋆ =
{x ∈ S : m(x) = M⋆}. Of course, in the symmetric, nearest–neighbor case, where
r(x, y) = 1 if y = x± 1, modulo κ, and r(x, y) = 0 otherwise, m is constant and S⋆

and S coincide.
Fix a real number α > 1. Let g : N → R be given by

g(0) = 0 , g(1) = 1 , and g(n) =
( n

n − 1

)α

, n ≥ 2 ,

so that
∏n

i=1 g(i) = nα, n ≥ 1. Consider the zero range process on S in which a
particle jumps from a site x, occupied by k particles, to a site y at rate g(k)r(x, y).
Since g is decreasing, the dynamics is attractive in the sense that particles on sites
with a large number of particles leave them at a slower rate than particles on sites
with a small number of particles.

The total number of particles is conserved by the dynamics, and for each fixed
integer N ≥ 1 the process restricted to the set of configurations with N particles,
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denoted by EN , is irreducible. Let µN be the unique invariant probability measure
on EN . When α > 2, the measure µN exhibits a very peculiar structure called
condensation in the physics literature. Mathematically, this means that under the
stationary state, above a certain critical density, as the total number of particles
N ↑ ∞, only a finite number of particles are located on the sites which do not
contain the largest number of particles.

Condensation has been observed and investigated in shaken granular systems,
growing and rewiring networks, traffic flows and wealth condensation in macroeco-
nomics. We refer to the recent review by Evans and Hanney [4].

Several aspects of the condensation phenomenon for zero range dynamics have
been examined. Let the condensate be the site with the maximal occupancy. Precise
estimates on the number of particles at the condensated, as well as its fluctuations,
have been obtained in [9, 8, 5]. The equivalence of ensembles has been proved
by Großkinsky, Schütz and Spohn [8]. Ferrari, Landim and Sisko [6] proved that
if the number of sites is kept fixed, as the total number of particles N ↑ ∞, the
distribution of particles outside the condensated converges to the grand canonical
distribution with critical density. Armendariz and Loulakis [1] generalized this
result showing that if the number of sites κ grows with the number of particles N
in such a way that the density N/κ converges to a value greater than the critical
density, the distribution of the particles outside the condensate converges to the
grand canonical distribution with critical density.

We investigate in this article the dynamical aspects of the condensation phe-
nomenon. Fix an initial configuration with the majority of particles located at one
site. Denote by XN

t the position of the condensated at time t ≥ 0. In case of ties,
XN

t remains in the last position. The process {XN
t : t ≥ 0} evolves randomly on S

according to some non-Markovian dynamics.
The main result of this article states that, for α > 1, in the time scale N1+α,

the process {XN
t : t ≥ 0} evolves asymptotically according to a random walk on S⋆

which jumps from x to y at a rate proportional to the capacity capS(x, y). In the
terminology of [2], we are proving that the condensate exhibits a tunneling behavior
in the time scale N1+α.

This article leaves two interesting open questions. The techniques used here rely
strongly on the reversibility of the process. It is quite natural to examine the same
problem for asymmetric zero range processes where new techniques are required.
On the other hand, the number of sites is kept fixed. It is quite tempting to let
the number of sites grow with the number of particles. In this case, in the nearest
neighbor, symmetric model, for instance, the condensate jumps from one site to
another at rate proportional to the inverse of the distance. The rates are therefore
not summable and it is not clear if a scaling limit exists.

Simulations for the evolution of the condensated have been performed by Go-
drèche and Luck [7]. The authors predicted the time scale, obtained here, in which
the condensate evolves and claimed that the time scale should be the same for non
reversible dynamics.

2. Notation and results

Throughout this article we fix a finite set S of cardinality κ ≥ 2 and a real
number α > 1. For each S0 ⊆ S consider the set of configurations EN,S0

, N ≥ 1,



3

given by

EN,S0
:=

{

η ∈ NS0 :
∑

x∈S0

ηx = N
}

,

where N = {0, 1, 2, ...}. When S0 = S, we use the shorthand EN for EN,S. Define
a(n) = nα for n ≥ 1 and set a(0) = 1. Let us also define g : N → R+,

g(0) = 0 , g(1) = 1 and g(n) =
a(n)

a(n − 1)
, n ≥ 2 ,

in such a way that
∏n

i=1 g(i) = a(n), n ≥ 1, and {g(n) : n ≥ 2} is a strictly
decreasing sequence converging to 1 as n ↑ ∞.

Consider a random walk on S with jump rates denoted by r. Its generator LS

acts on functions f : S → R as

(LSf)(x) =
∑

y∈S

r(x, y){f(y) − f(x)} .

Assume that this Markov process is irreducible and reversible with respect to some
probability measure m on S:

m(x) r(x, y) = m(y) r(y, x) , x, y ∈ S . (2.1)

Let M⋆ be the maximum value of the probability measure m, let S⋆ ⊂ S be the
sites of S where m attains its maximum and let κ⋆ be the cardinality of S⋆:

M⋆ = max{m(x) : x ∈ S} , S⋆ = {x ∈ S : m(x) = M⋆} and κ⋆ = |S⋆| .

In addition, let m⋆(x) = m(x)/M⋆ so that m⋆(x) = 1 for any x ∈ S⋆. Denote by
DS the Dirichlet form associated to the random walk:

DS(f) =
1

2

∑

x,y∈S

m(x)r(x, y){f(y) − f(x)}2 (2.2)

for f : S → R, and denote by capS(x, y) the capacity between two different points
x, y ∈ S:

capS(x, y) = inf
f∈B(x,y)

{DS(f)} , (2.3)

where the infimum is carried over the set B(x, y) of all functions f : S → R such
that f(x) = 1 and f(y) = 0.

For each pair x, y ∈ S, x 6= y, and η ∈ EN such that ηx > 0, denote by σxyη the
configuration obtained from η by moving a particle from x to y:

(σxyη)z =







ηx − 1 for z = x
ηy + 1 for z = y
ηz otherwise .

For each N ≥ 1, consider the zero range process defined as the Markov process
{ηN(t) : t ≥ 0} on EN whose generator LN acts on functions F : EN → R as

(LNF )(η) =
∑

x,y∈S

x 6=y

g(ηx) r(x, y)
{

F (σxyη) − F (η)
}

. (2.4)

The Markov process corresponding to LN , N ≥ 1, is irreducible and reversible with
respect to its unique invariant measure µN given by

µN (η) =
Nα

ZN,S

∏

x∈S

m⋆(x)ηx

a(ηx)
:=

Nα

ZN,S

mη
⋆

a(η)
, η ∈ EN ,



4 J. BELTRÁN, C. LANDIM

where, for any S0 ⊆ S,

mζ
⋆ =

∏

x∈S0

m⋆(x)ζx , a(ζ) =
∏

x∈S0

a(ζx) , ζ ∈ NS0 ,

and ZN,S0
is the normalizing constant

ZN,S0
= Nα

∑

ζ∈EN,S0

mζ
⋆

a(ζ)
· (2.5)

In Section 3 we show that the sequence {ZN,S : N ≥ 1} converges as N ↑ ∞.
This explains the factor Nα in its definition. The precise statement is as follows.
For x in S and κ ≥ 2, let

Γx :=
∑

j≥0

m⋆(x)j

a(j)
, Γ(α) :=

∑

j≥0

1

a(j)

so that Γ(α) = Γx for any x ∈ S⋆, and define

ZS :=
κ⋆

Γ(α)

∏

z∈S

Γz = κ⋆Γ(α)κ⋆−1
∏

y 6∈S⋆

Γy .

Proposition 2.1. For every κ ≥ 2,

lim
N→∞

ZN,S = ZS .

Denote by DN the Dirichlet form associated to the generator LN . An elementary
computation shows that

DN (F ) =
1

2

∑

x,y∈S

x 6=y

∑

η∈EN

µN (η) g(ηx) r(x, y) {F (σxyη) − F (η)}2 ,

for every F : EN → R.
For every two disjoint subsets A, B of EN denote by CN(A, B) the set of functions

F : EN → R defined by

CN (A, B) := {F : F (η) = 1 ∀ η ∈ A and F (ξ) = 0 ∀ ξ ∈ B} .

The capacity corresponding to this pair of disjoint subsets A, B is defined as

capN (A, B) := inf
{

DN (F ) : F ∈ CN (A, B)
}

.

Since DN (F ) = DN (1 − F ), capN (A, B) = capN (B, A).
Fix a sequence {ℓN : N ≥ 1} such that 1 ≪ ℓN ≪ N and, for each z ∈ S \ S⋆,

fix a sequence {bN (z) : N ≥ 1} such that 1 ≪ bN(z):

lim
N→∞

ℓN = ∞ , lim
N→∞

ℓN/N = 0 , and lim
N→∞

bN(z) = ∞ , (2.6)

for all z ∈ S \ S⋆. For x in S⋆, let

Ex
N :=

{

η ∈ EN : ηx ≥ N − ℓN , ηz ≤ bN (z) , z 6∈ S⋆

}

.

Obviously, Ex
N 6= ∅ for all x ∈ S⋆ and every N large enough. In the case where the

measure m is uniform, the second condition is meaningless and the set Ex
N becomes

Ex
N = {η ∈ EN : ηx ≥ N − ℓN}.
Condition ℓN/N → 0 is required to guarantee that on each set Ex

N the proportion
of particles at x ∈ S⋆, i.e. ηx/N , is almost one. As a consequence, for N sufficiently
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large, the subsets Ex
N , x ∈ S⋆, are pairwise disjoint. ¿From now on, we assume that

N is large enough so that the partition

EN =
(

⋃

x∈S⋆

Ex
N

)

∪ ∆N (2.7)

is well defined, where ∆N is the set of configurations which do not belong to any
set Ex

N , x ∈ S⋆.
The assumptions that ℓN ↑ ∞ and that bN (z) ↑ ∞ for all z 6∈ S⋆ are sufficient

to prove that µN (∆N ) → 0, as we shall see in (3.2), and to deduce the limit of
the capacities stated in Theorem 2.2 below. In particular, in these two statements
we may set bN (z) = N , z 6∈ S⋆, in order to discard the second restriction in the
definition of the sets Ex

N , x ∈ S⋆. We need, however, further restrictions on the
growth of ℓN and bN (z) to prove the tunneling behaviour of the zero range processes
presented in Theorem 2.4 below.

To state the first main result of this article, for any nonempty subset S′
⋆ of S⋆,

let EN (S′
⋆) = ∪x∈S′

⋆
Ex

N , and let

Iα :=

∫ 1

0

uα(1 − u)α du . (2.8)

Theorem 2.2. Assume that κ⋆ ≥ 2. Fix a nonempty subset S1
⋆ ( S⋆ and denote

S2
⋆ = S⋆ \ S1

⋆ . Then,

lim
N→∞

N1+αcapN

(

EN (S1
⋆), EN (S2

⋆)
)

=
1

M⋆ κ⋆ Γ(α) Iα

∑

x∈S1
⋆,y∈S2

⋆

capS(x, y) .

Note that the right hand side depends on the sites not in S⋆ through the capac-
ities capS(x, y). In the case where the measure m is constant, S⋆ = S, M⋆ = κ−1

⋆

and the right hand side becomes

1

Γ(α) Iα

∑

x∈S1
⋆,y∈S2

⋆

capS(x, y) .

To prove Theorem 2.2, we derive a lower and an upper bound for the capacity. In
the first part, we need to obtain a lower bound for the Dirichlet form of functions in
CN(EN (S1

⋆), EN (S2
⋆)). To our advantage, since it is a lower bound, we may neglect

some bonds in the Dirichlet form we believe to be irrelevant. On the other hand, and
this is the main difficulty, the estimate must be uniform over CN (EN (S1

⋆), EN (S2
⋆)).

As we shall see in Section 4, the proof of a sharp lower bound gives a clear indication
of the qualitative behavior of the function which solves the variational problem
appearing in the definition of the capacity. With this information, we may propose
a candidate for the upper bound. Here, in contrast with the first part, we have
to estimate the Dirichlet form of a specific function, our elected candidate, but we
need to estimate all the Dirichlet form and can not neglect any bond.

For each η ∈ EN , let PN
η stand for the probability on the path space D(R+, EN )

induced by the zero range process {ηN (t) : t ≥ 0} introduced in (2.4) starting from
η ∈ EN . Expectation with respect to PN

η is denoted by EN
η . In addition, for any

A ⊆ EN , let TA denote the hitting time of A:

TA := inf
{

t ≥ 0 : ηN (t) ∈ A
}

.
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Remark 2.3. It is well known (see e.g. Lemma 6.4 in [2]) that the solution of the
variational problem for the capacity is given by

FS1
⋆,S2

⋆
(η) = PN

η

[

TEN (S1
⋆) < TEN (S2

⋆)

]

.

The candidate proposed in the proof of the upper bound provides, therefore, an
approximation, in the Dirichlet sense, of the function FS1

⋆,S2
⋆
.

The second main result of this article states that the zero range process exhibits
a metastable behavior as defined in [2]. Fix a nonempty subset A of EN . For each
t ≥ 0, let T A

t be the time spent by the zero range process {ηN (t) : t ≥ 0} on the
set A in the time interval [0, t]:

T A
t :=

∫ t

0

1{ηN(s) ∈ A} ds

and let SA
t be the generalized inverse of T A

t :

SA
t := sup{s ≥ 0 : T A

s ≤ t} .

It is well known that the process {ηN,A(t) : t ≥ 0} defined by ηN,A(t) = ηN (SA
t ) is

a strong Markov process with state space A [2]. This Markov process is called the
trace of the Markov process {ηN(t) : t ≥ 0} on A.

Consider the trace of {ηN (t) : t ≥ 0} on EN (S⋆), referred to as ηE
⋆
N (t). Let

ΨN : EN (S⋆) 7→ S⋆ be given by

ΨN (η) =
∑

x∈S⋆

x1{η ∈ Ex
N}

and let XN
t := ΨN (ηE

⋆
N (t)).

We prove in Theorem 2.4 below that the speeded up non-Markovian process
{XN

tNα+1 : t ≥ 0} converges to the random walk {Xt : t ≥ 0} on S⋆ whose generator
LS⋆

is given by

(LS⋆
f)(x) =

1

M⋆ Γ(α) Iα

∑

y∈S⋆

capS(x, y) {f(y) − f(x)} . (2.9)

For x in S⋆, denote by Px the probability measure on the path space D(R+, S⋆)
induced by the random walk {Xt : t ≥ 0} starting from x.

Theorem 2.4. Assume that κ⋆ ≥ 2. If (2.6) holds and

lim
N→∞

ℓ
1+α(κ−1)
N

N1+α

∏

z∈S\S⋆

m⋆(z)−bN (z) = 0 (2.10)

then, for each x ∈ S⋆,

(M1) We have

lim
N→∞

inf
η,ξ∈Ex

N

PN
η

[

T{ξ} < TEN (S⋆\{x})

]

= 1 ;

(M2) For any sequence ξN ∈ Ex
N , N ≥ 1, the law of the stochastic process

{XN
tNα+1 : t ≥ 0} under PN

ξN
converges to Px as N ↑ ∞;

(M3) For every T > 0,

lim
N→∞

sup
η∈Ex

N

EN
η

[

∫ T

0

1
{

ηN (sNα+1) ∈ ∆N

}

ds
]

= 0 .
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If κ > κ⋆, in order to fulfill conditions (2.6) and (2.10), we can take, for instance,

bN (z) =
− log(ℓN )

log(m⋆(z))
for z ∈ S \ S⋆ and ℓN = N1/(κ−1)

if κ⋆ ≥ 3, ℓN = N1/[κ−(1/2)] if κ⋆ = 2.
According to the terminology introduced in [2], Theorem 2.4 states that the

sequence of zero range processes {ηN (t) : t ≥ 0} exhibits a tunneling behaviour on
the time-scale Nα+1 with metastates given by {Ex

N : x ∈ S⋆} and limit given by
the random walk {Xt : t ≥ 0}.

Property (M3) states that, outside a time set of order smaller than Nα+1, one
of the sites in S⋆ is occupied by at least N − ℓN particles. Property (M2) describes
the time-evolution on the scale Nα+1 of the site concentrating the largest number
of particles. It evolves asymptotically as a Markov process on S⋆ which jumps from
a site x to y at a rate proportional to the capacity capS(x, y) of the underlying
random walk. Property (M1) guarantees that the process starting in a metastate
Ex

N thermalizes therein before reaching any other metastate.

Remark 2.5. In [8], it is shown that, in the case the number of sites increases with
the number of particles, the highest occupied site contains a nonzero fraction of the
particles in the system. This result includes the case 1 < α ≤ 2. In contrast, when
the number of sites is kept fixed, it seems to have been unnoticed in the literature
that the condensation phenomenon appears also for 1 < α ≤ 2. More precisely, if
1 ≪ ℓN ≪ N , then

lim
N→∞

µN

(

ηx ≥ N − ℓN

)

= 1/κ⋆ , ∀x ∈ S⋆ .

Moreover, given that particles concentrate on x ∈ S⋆, the distribution of the configu-
ration on S\{x} is asymptotically given by the grand-canonical measure determined
by m⋆: For any x in S⋆,

lim
N→∞

sup
ζ∈Gx

N

∣

∣

∣
µN

(

ηz = ζz , z 6= x
∣

∣ ηx ≥ N − ℓN

)

−
∏

z 6=x

1

Γz

m⋆(z)ζz

a(ζz)

∣

∣

∣
= 0 ,

where Gx
N := {ζ ∈ NS\{x} :

∑

z ζz ≤ ℓN}. There is just a small difference between
the cases 1 < α ≤ 2 and α > 2. While in the former, the variables {ηz : z ∈ S⋆}
do not have finite expectation under the critical grand-canonical measure, they do
have finite expectation in the latter case.

In [3], we have proved Theorems 2.2 and 2.4 in the case where the rates r(·, ·)
in the definition of the sequence of zero range processes corresponds to a random
walk on a finite complete graph. Since it covers the case κ = 2, we may suppose
that κ ≥ 3.

3. The stationary measure µN

In this section, we prove Proposition 2.1. The proof relies on four lemmata. We
first show that the sequence ZN,S is bounded below by a strictly positive constant
and above by a finite constant. Let

Z̃N,κ = Nα
∑

η∈EN

1

a(η)

and note that ZN,S ≤ Z̃N,|S|.
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Lemma 3.1. For each κ ≥ 2, there exists a constant Aκ > 0, which only depends
on α and κ, such that

1 ≤ ZN,S ≤ Z̃N,κ ≤ Aκ .

Proof. Choose x in S⋆ and denote by ξ the configuration in EN such that ξ(x) = N ,

ξ(y) = 0 for y 6= x. By definition, m⋆(x) = 1 so that ZN,S ≥ Nαmξ
⋆/a(ξ) = 1,

which proves the lower bound.
We proceed by induction to prove the upper bound. The estimate clearly holds

for κ = 2. Assume that it is in force for 2 ≤ κ < k. The identity

Z̃N,k = Nα
{ 1

Nα
+

N−1
∑

j=0

Z̃N−j,k−1

a(j)a(N − j)

}

permits to extend it to κ = k. �

For any ℓ ≥ 1, let EN,S(ℓ) be the subset of EN,S of all configurations with at
most N − ℓ particles per site:

EN,S(ℓ) =
{

η ∈ EN,S : ηx ≤ N − ℓ , ∀x ∈ S
}

.

Next lemma shows that the measure µN is concentrated on configurations in which
all particles but a finite number accumulate at one site.

Lemma 3.2. There exists a constant Cκ > 0 which only depends on α and κ, such
that for every integer ℓ > 0,

sup
N>ℓ

{

Nα
∑

η∈EN,S(ℓ)

1

a(η)

}

≤ Cκ

ℓα−1
·

Proof. We proceed by induction on κ. For κ = 2 the statement is easily checked.
Now, suppose the claim holds for 2 ≤ κ ≤ k − 1. Fix some x in S. The left hand
side of the inequality in the statement can be written as

∑

η∈EN,S(ℓ)

Nα

a(ηx)a(N − ηx)

(

N − ηx

)α

∏

y 6=x a(ηy)
·

This sum is equal to

{

∑

0≤i≤ℓ/2

+
∑

ℓ/2<i≤N−ℓ

} Nα

a(i)a(N − i)

∑

ξ∈EN−i,S\{x}(ℓ−i)

(N − i)α

a(ξ)
, (3.1)

where the second sum is equal to zero if {i : ℓ/2 < i ≤ N −ℓ} is empty. We examine
the two terms of this expression separately. By the induction assumption, the first
sum is bounded above by

ℓ/2
∑

i=0

Nα

a(i)a(N − i)

Ck−1

(ℓ − i)α−1
·

By the previous lemma, this sum is less than or equal to

2α−1Ck−1

ℓα−1

ℓ/2
∑

i=0

Nα

a(i)a(N − i)
≤ 2α−1Ck−1Z̃N,2

ℓα−1
≤ 2α−1Ck−1A2

ℓα−1
·
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On the other hand, by Lemma 3.1 and the induction assumption for κ = 2, the
second term in (3.1) is less than or equal to

∑

ℓ/2<i≤N−ℓ

Nα

a(i)a(N − i)
Z̃N−i,k−1 ≤ Ak−1 C2 (2/ℓ)α−1 ·

This concludes the proof of the lemma. �

For N ≥ 2, 0 ≤ ℓ ≤ N , x ∈ S, denote by Ex,ℓ
N the set of configurations in EN,S

with at least N − ℓ particles at site x:

Ex,ℓ
N = {η ∈ EN,S : η(x) ≥ N − ℓ} .

Recall the definition of the set S⋆. Next lemma shows that the µN–measure of the

set Ex,ℓ
N decays exponentially if x does not belong to S⋆.

Lemma 3.3. For each κ ≥ 2, there exists a finite constant Cκ, depending only on
κ and α, such that

Nα
∑

η∈Ex,ℓ

N

mη
⋆

a(η)
≤ Cκ m⋆(x)N−ℓ

for all N > ℓ.

Proof. Fix κ ≥ 2 and x in S. The expression on the left hand side of the statement
of the lemma is bounded by

m⋆(x)N + Nα
N−1
∑

i=N−ℓ

m⋆(x)i

iα

∑

ξ∈EN−i,S\{x}

1

a(ξ)
·

By Lemma 3.1 and since m⋆(x) ≤ 1, the second term is less than or equal to

Nα
N−1
∑

i=N−ℓ

m⋆(x)i

iα(N − i)α
Z̃N−i,κ−1 ≤ A2 Aκ−1 m⋆(x)N−ℓ ,

which concludes the proof of the lemma. �

If ℓ < N/2, the sets {Ex,ℓ
N : x ∈ S} are pairwise disjoint and

EN,S \
⋃

x∈S

Ex,ℓ
N = EN,S(ℓ + 1) .

It follows from the two previous lemmata that the sum in the definition of ZN,S

restricted to configurations on Ex,ℓ
N , x ∈ S⋆, is close to κ−1

⋆ ZN,S for ℓ (and conse-
quently N) large.

Lemma 3.4. For each κ ≥ 2, there exists a constant Cκ > 0, which only depends
on α and κ, such that for every integer ℓ > 0 and x ∈ S⋆,

sup
N>2ℓ

∣

∣

∣
Nα

∑

η∈Ex,ℓ

N

mη
⋆

a(η)
− ZN,S

κ⋆

∣

∣

∣
≤ Cκ

ℓα−1
·

Proof. As we have observed, for 0 < ℓ < N/2,

ZN,S = Nα
∑

x∈S

∑

η∈Ex,ℓ
N

mη
⋆

a(η)
+ Nα

∑

η∈EN,S(ℓ+1)

mη
⋆

a(η)
·
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By symmetry, for x, y in S⋆,

∑

η∈Ex,ℓ
N

mη
⋆

a(η)
=

∑

η∈Ey,ℓ
N

mη
⋆

a(η)
·

Hence, if x belongs to S⋆,

ZN,S = κ⋆N
α

∑

η∈Ex,ℓ
N

mη
⋆

a(η)
+ Nα

∑

y 6∈S⋆

∑

η∈Ey,ℓ
N

mη
⋆

a(η)
+ Nα

∑

η∈EN,S(ℓ+1)

mη
⋆

a(η)
·

The statement now follows from the two previous lemmata. �

We are now in a position to prove the main result of this section.

Proof of Proposition 2.1. Fix a site x in S⋆. By the previous lemma,

lim
N→∞

κ−1
⋆ ZN,S = lim

ℓ→∞
lim

N→∞
Nα

∑

η∈Ex,ℓ

N

mη
⋆

a(η)
·

Since x belongs to S⋆, the previous sum is equal to

ℓ
∑

j=0

Nα

(N − j)α

∑

ξ∈Ej,S\{x}

mξ
⋆

a(ξ)
,

As N ↑ ∞ and ℓ ↑ ∞, this expression converges to

∑

j≥0

∑

ξ∈Ej,S\{x}

mξ
⋆

a(ξ)
=

∏

y 6=x

∑

j≥0

m⋆(y)j

a(j)
=

∏

y 6=x

Γy .

This concludes the proof of the proposition. �

We close this section showing that

lim
N→∞

µN (∆N ) = 0 . (3.2)

Recall the definition of the set S⋆ and of the sets Ex
N , x ∈ S⋆. Since

∆N =
[

⋃

z∈S\S⋆

{

η : ηz > bN (z)
}

]

⋃

[

⋂

x∈S⋆

{

η : ηx < N − ℓN

}

]

,

intersecting the second set with the partition A = ∩z∈S\S⋆

{

η : ηz < N − ℓN

}

and
Ac, we get that

∆N ⊂
⋃

z∈S\S⋆

Ez,cN

N

⋃

EN,S(ℓN + 1) ,

where cN = min{ℓN , N − bN(z) : z ∈ S \ S⋆}. Hence, assertion (3.2) follows from
Lemma 3.2, assumption (2.6) and Lemma 3.3.
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4. Lower bound

In this section we prove a lower bound for the capacity. It might be simpler in
a first reading to assume that m is constant so that S = S⋆.

For b, ℓ ≥ 3 and x, y in S⋆, x 6= y, consider the tube Lx,y
N defined by

Lx,y
N =

{

η ∈ EN : ηx + ηy ≥ N − ℓ ; ηz ≤ b , z ∈ S \ S⋆

}

.

Clearly, Lx,y
N = Ly,x

N for any x, y ∈ S⋆. We claim that for each x ∈ S⋆ and every N
sufficiently large

Lx,y
N ∩ Lx,z

N ⊂ Ex
N , y, z ∈ S⋆ \ {x} . (4.1)

Indeed, let η ∈ Lx,y
N ∩ Lx,z

N . First, b ≤ infz∈S\S⋆
bN (z) for any N sufficiently large

in view of (2.6). On the other hand, ηz ≤ ℓ because η belongs to Lx,y
N . Hence,

ηx ≥ N − 2ℓ since η belongs to Lx,z
N . Since ℓN → ∞, this shows that ηx ≥ N − ℓN ,

for N large enough and we conclude that η ∈ Ex
N . Moreover, it follows from this

argument that, for N sufficiently large,

Lx,y
N ∩ Lz,w

N 6= ∅ if and only if {x, y} ∩ {z, w} 6= ∅ . (4.2)

Proposition 4.1. Assume that κ⋆ ≥ 2. Fix a nonempty subset S1
⋆ ( S⋆ and denote

S2
⋆ = S⋆ \ S1

⋆ . Then,

lim inf
N→∞

N1+αcapN

(

EN (S1
⋆), EN (S2

⋆)
)

≥ 1

M⋆ κ⋆ Γ(α) Iα

∑

x∈S1
⋆,y∈S2

⋆

capS(x, y) .

Proof. Fix a function F in CN (EN (S1
⋆), EN (S2

⋆)). By definition,

DN(F ) =
1

2

∑

z,w∈S

∑

η∈EN

µN (η) r(z, w) g(ηz) {F (σzwη) − F (η)}2 .

We may bound from below the Dirichlet form DN (F ) by

1

2

∑

x∈S1
⋆

∑

y∈S2
⋆

∑

z,w∈S

∑

η∈Lx,y

N

µN (η) r(z, w) g(ηz) {F (σzwη) − F (η)}2 .

In this inequality, we are neglecting several terms corresponding to configurations
η which do not belong to ∪x∈S1

⋆,y∈S2
⋆
Lx,y

N . On the other hand, some configurations

are counted more than once because the sets {Lx,y
N : x ∈ S1

⋆ , y ∈ S2
⋆} are not

disjoints. However, by (4.2), if Lx,y
N and Lx′,y′

N are different strips and η belongs

to Lx,y
N ∩ Lx′,y′

N then x = x′ and y 6= y′ (recall that Lx,y
N = Ly,x

N ). In consequence,
ηx ≥ N − 2ℓ. In particular, for N large enough, η and σzwη belong to Ex

N for all
z, w ∈ S, so that F (σzwη) = F (η) because F is constant on Ex

N .
The proof of the lower bound has two steps. We first use the underlying random

walk to estimate the Dirichlet form DN (F ) by the capacity of this random walk
multiplied by the Dirichlet form of a zero range process on two sites. This remaining
Dirichlet form is easily bounded by explicit computations.

Fix x ∈ S1
⋆ , y ∈ S2

⋆ . Denote by dx, x ∈ S, the configuration with one and
only one particle at x, and agree that summation of configurations is performed
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componentwise. The change of variables ξ = η − dz shows that

1

2

∑

z,w∈S

∑

η∈Lx,y
N

µN (η) r(z, w) g(ηz) {F (σzwη) − F (η)}2

=
1

2

∑

z,w∈S

∑

ξ∈EN−1

ξ+dz∈Lx,y
N

Nα

ZN,S

mξ
⋆

a(ξ)
m⋆(z) r(z, w) {F (ξ + dw) − F (ξ + dz)}2 .

This sum is clearly bounded below by

1

2

∑

z,w∈S

∑

ξ∈EN−1

ξx+ξy≥N−ℓ
ξz≤b−1,∀z∈S\S⋆

Nα

ZN,S

mξ
⋆

a(ξ)
m⋆(z) r(z, w) {F (ξ + dw) − F (ξ + dz)}2 .

Fix a configuration ξ in EN−1 and consider the function f : S → R given by
f(v) = {F (ξ + dv) − F (ξ + dy)}/{F (ξ + dx) − F (ξ + dy)}. Note that f(x) = 1,
f(y) = 0. Moreover, if we recall the expression (2.2) of the Dirichlet form of the
underlying random walk,

1

2

∑

z,w∈S

m⋆(z) r(z, w) {F (ξ + dw) − F (ξ + dz)}2

=
1

M⋆
DS(f) {F (ξ + dx) − F (ξ + dy)}2 .

Since f(x) = 1, f(y) = 0, the previous expression is bounded below by

1

M⋆
capS(x, y) {F (ξ + dx) − F (ξ + dy)}2 .

Up to this point we proved that the Dirichlet form of F is bounded below by

1

M⋆

∑

x∈S1
⋆,y∈S2

⋆

capS(x, y)
∑

ξ∈EN−1

ξx+ξy≥N−ℓ
ξz≤b−1,∀z∈S\S⋆

Nα

ZN,S

mξ
⋆

a(ξ)
{F (ξ + dx) − F (ξ + dy)}2 .

Fix x0 ∈ S1
⋆ , y0 ∈ S2

⋆ and let S0 := S \ {x0, y0}. For each k ≥ 0, let Bk = Bx0,y0

k

be the set of configurations on S0 given by

Bk =
{

ζ ∈ NS0 :
∑

v∈S0

ζv = k ; ζz ≤ b − 1 , z ∈ S \ S⋆

}

.

For ζ in Bk, let Gζ : {0, . . . , N − 1− k} → R be defined as Gζ(i) = F (ξ), where ξ ∈
EN−1 is the configuration given by ξv = ζv, v ∈ S0, ξx0

= i and ξy0
= N −1−k− i.

With this notation, for x0 ∈ S1
⋆ , y0 ∈ S2

⋆ fixed, we may rewrite the second sum in
the previous formula as

Nα

ZN,S

ℓ
∑

k=0

∑

ζ∈Bk

mζ
⋆

a(ζ)

N−2−k
∑

i=0

1

a(i) a(N − 1 − k − i)
{Gζ(i + 1) − Gζ(i)}2

because m⋆(x0) = m⋆(y0) = 1. Note that Gζ is equal to 0 on the set {0, . . . , ℓN −k},
and equal to 1 on the set {N − ℓN , . . . , N − 1 − k}. We may therefore restrict the
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sum over i to a subset. It is easy to derive a lower bound for

N−ℓN−1
∑

i=ℓN−k

1

a(i) a(N − 1 − k − i)
{Gζ(i + 1) − Gζ(i)}2 .

The function G which minimizes this expression is given by G(N − ℓN ) = 1,

G(i + 1) − G(i) =
1

KN
a(i) a(N − 1 − k − i) , i ∈

[

ℓN − k , N − ℓN − 1
]

,

where KN is a normalizing constant to ensure the boundary condition G(ℓN −k) =
0. The respective lower bound is

ΞN (x0, y0) :=
{

N−ℓN−1
∑

i=ℓN−k

a(i) a(N − 1 − k − i)
}−1

.

This expression depends on the configuration ζ only through its number of particles.
Moreover, for every fixed k, N1+2αΞN (x0, y0) converges to I−1

α as N ↑ ∞.
In conclusion,

Nα+1 DN (F ) ≥ 1

M⋆

∑

x∈S1
⋆,y∈S2

⋆

capS(x, y)
N2α+1

ZN,S

ℓ
∑

k=0

∑

ζ∈Bk

ΞN (x, y)
mζ

⋆

a(ζ)
·

By Proposition 2.1 and the above conclusions, as N ↑ ∞, the right hand side
converges to

1

M⋆ Iα ZS

∑

x∈S1
⋆,y∈S2

⋆

capS(x, y)

ℓ
∑

k=0

∑

ζ∈Bk

mζ
⋆

a(ζ)
·

Recall that ℓ and b are free parameters introduced in the definition of the strip
Lx,y

N . Thus, letting b ↑ ∞ and then ℓ ↑ ∞, the second sum in the last expression
converges to

∑

k≥0

∑

ζ∈Ek,S\{x,y}

mζ
⋆

a(ζ)
=

∏

z∈S\{x,y}

∑

j≥0

m⋆(z)j

a(j)
=

∏

z∈S\{x,y}

Γz =
ZS

κ⋆Γ(α)
·

For the last equation we have used the explicit formula of ZS presented just before
Proposition 2.1. This proves the lemma. �

5. Upper bound

We prove in this section an upper bound for the capacity. As in the previous
section, it might be simpler in a first reading to assume that m is constant so that
S = S⋆.

Proposition 5.1. Assume that κ⋆ ≥ 2. Fix a nonempty subset S1
⋆ ( S⋆ and denote

S2
⋆ = S⋆ \ S1

⋆ . Then,

lim sup
N→∞

N1+αcapN

(

EN (S1
⋆), EN (S2

⋆)
)

≤ 1

M⋆ κ⋆ Γ(α) Iα

∑

x∈S1
⋆,y∈S2

⋆

capS(x, y) .

In view of the variational formula for the capacity, to obtain an upper bound
for capN (EN (S1

⋆), EN (S2
⋆)), we need to choose a suitable function belonging to

CN(EN (S1
⋆), EN (S2

⋆)) and to compute its Dirichlet form. Recalling the proof of
the lower bound, we expect this candidate to depend on the function which solves
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the variational problem for the capacity of the underlying random walk and on the
optimal function for the zero range process with two sites.

To introduce the candidate, fix x ∈ S1
⋆ , y ∈ S2

⋆ and recall the definition of
the tube Lx,y

N . In view of the proof of the lower bound, the optimal function
F ∈ CN (EN (S1

⋆), EN (S2
⋆)) on the tube Lx,y

N should satisfy

F (ξ + dw) − F (ξ + dz) = {fxy(w) − fxy(z)} {F (ξ + dx) − F (ξ + dy)}
= {fxy(w) − fxy(z)} {G(ξx + 1) − G(ξx)} ,

where fx,y is the function which solves the variational problem (2.3) in B(x, y) for
the capacity of the underlying random walk, and G is the function appearing in the
proof of the lower bound.

Since, on the tube Lx,y
N ,

∑

z 6=x,y ξz ≤ ℓN and G is a smooth function, paying

a small cost we may replace ξx in the previous formula by ξx +
∑

z∈A ξz for any
suitable set A ⊂ S \ {x, y}. The natural candidate on the strip Lx,y

N is therefore

F̂xy(ξ) :=

κ−1
∑

j=1

{fxy(zj) − fxy(zj+1)}G
(

ξz1
+ · · · + ξzj

)

,

where x = z1, z2, . . . , zκ = y is an enumeration of S such that fxy(zj) ≥ fx,y(zj+1)
for 1 ≤ j < κ. A simple computation shows that this function has the required
properties listed in the previous paragraph.

Since the tubes Lx,y
N , x ∈ S1

⋆ , y ∈ S2
⋆ , are essentially disjoints, the candidate F

should be equal to F̂xy on each tube Lx,y
N and equal to some appropriate convex

combination of these functions on the complement.
We hope that this informal explanation helps to understand the rigorous and

detailed definition of the candidate we now present. Let D ⊂ RS be the compact
subset

D := {u ∈ RS
+ :

∑

x∈S

ux = 1} .

For each different sites x, y ∈ S and δ > 0, consider the subsets of D

Dx
δ := {u ∈ D : ux > 1 − δ} and L

xy
δ := {u ∈ D : ux + uy ≥ 1 − δ}

Clearly L
xy
δ = L

yx
δ for any x, y ∈ S.

Fix an arbitrary 0 < ǫ < 1/6 and x in S. Let Kx
y = Kx

y(ǫ) := Lxy
ǫ \ Dx

3ǫ, y 6= x.
Since Kx

y , y ∈ S \ {x}, is a collection of pairwise disjoint compact subsets of D,
there is a family of smooth functions

Θx
y : D → [0, 1] , y ∈ S \ {x} ,

such that
∑

y∈S\{x} Θx
y(u) = 1 for all u in D, and Θx

y(u) = 1 for all u in Kx
y and

y ∈ S \ {x}.
Clearly, the sets Lxy

ǫ are macroscopic versions of the strips Lx,y
N . The functions

Θx
y will be used to define the candidate function in the complement of the cylinders

Lx,y
N .
Let H : [0, 1] → [0, 1] be the smooth function given by

H(t) :=
1

Iα

∫ φ(t)

0

uα(1 − u)α du ,

where Iα is the constant defined in (2.8) and φ : [0, 1] → [0, 1] is a smooth bijective
function such that φ(t) + φ(1 − t) = 1 for every t ∈ [0, 1] and φ(s) = 0 ∀s ∈ [0, 3ǫ].
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It can be easily checked that

H(t) + H(1 − t) = 1 , ∀t ∈ [0, 1] , (5.1)

H |[0,3ǫ] ≡ 0 and H |[1−3ǫ,1] ≡ 1. The function H is a smooth approximation of the
function G which appeared in the proof of the lower bound.

Recall that x ∈ S is fixed. For each y ∈ S \ {x} consider the function fxy : S →
[0, 1] in B(x, y) such that

DS(fxy) = capS(x, y) = inf
f∈B(x,y)

DS(f) .

It is well known that fxy(z) is equal to the probability that the random walk with
generator LS reaches x before y when it starts from z.

For each y ∈ S \ {x} fix an enumeration

x = z1 , z2 , . . . , zκ = y (5.2)

of S satisfying fxy(zj) ≥ fxy(zj+1) for 1 ≤ j ≤ κ − 1 and define Fxy : EN → R as
the convex linear combination

Fxy(η) :=

κ−1
∑

j=1

{fxy(zj) − fxy(zj+1)}F j
xy(η) , η ∈ EN ,

where each F j
xy : EN → R, 1 ≤ j ≤ κ − 1, is given by F 1

xy(η) = H(ηx/N) and

F j
xy(η) := H

( ηx

N
+ min

{ 1

N

j
∑

i=2

ηzi
; ǫ

}

)

, η ∈ EN , (5.3)

for 2 ≤ j ≤ κ − 1.

The function Fxy just defined is a smooth approximation of the function F̂x,y

defined at the beginning of this section. It is therefore the candidate to solve the
variational problem for the capacity on the tube Lx,y

N . It remains to define Fxy in
the exterior of the cylinders.

Let Fx : EN → R be given by

Fx(η) :=
∑

y∈S\{x}

Θx
y(η/N)Fxy(η) ,

where each η/N is thought of as a point in D and {Θx
y : y ∈ S \{x}} is the partition

of unity established before.
The following properties of Fx are helpful in the proof of Proposition 5.1. It is

easy to check that

Fx(η) = Fxy(η) for η/N ∈ Lxy
ǫ . (5.4)

Indeed, if η/N belongs to Kx
y , Θx

y(η/N) = 1 proving the identity claimed. On the

other hand, if η/N belongs to Dx
3ǫ, by definition of H , F j

xz(η) = 1 for all z ∈ S\{x},
1 ≤ j ≤ κ − 1, so that Fxz(η) = Fx(η). By similar reasons,

Fx ≡ 1 on {η ∈ EN : ηx ≥ (1 − 3ǫ)N}
and Fx ≡ 0 on {η ∈ EN : ηx ≤ 2ǫN} . (5.5)

The minimum in definition (5.3) is introduced precisely to fulfill the second assertion
in (5.5). In particular, if η/N ∈ Dz

2ǫ for some z ∈ S then

Fx(η) = 1{z = x} . (5.6)
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Since H , as well as each Θx
y , is a smooth function, there exists a finite constant

Cǫ, which depends on ǫ through the definition of the smooth functions, but does
not depend on N ≥ 1, such that

max
η∈EN

|Fx(σzwη) − Fx(η)| ≤ Cǫ

N
(5.7)

for every z, w ∈ S.
Let

I
xy
N :=

{

η ∈ EN : ηx + ηy ≥ N − ℓN

}

, x 6= y ∈ S .

Clearly, I
xy
N = I

yx
N , x, y ∈ S and, for every N large enough, I

xy
N ⊆ Lxy

ǫ . Let
Ix
N := ∪y∈S\{x}I

xy
N . In what follows, the value of the constant Cǫ may change from

line to line, but will never depend on N .

Lemma 5.2. For each x ∈ S and every N ≥ 1 large enough,

1

2

∑

η∈EN\Ix
N

∑

z,w∈S

µN (η)g(ηz)r(z, w)
{

Fx(σzwη) − Fx(η)
}2 ≤ Cǫ m⋆(x)ǫN

Nα+1 (ǫ ℓN)α−1
·

Proof. By property (5.5), we can restrict the sum in the left hand side to configu-
rations η ∈ EN \ Ix

N satisfying ǫN ≤ ηx ≤ (1− ǫ)N . So, by (5.7), the left hand side
of the above inequality is bounded above by

Cǫ

N2

∑

η∈EN\I
x
N

ǫN≤ηx≤(1−ǫ)N

µN (η) .

This expression is bounded above by

NαCǫ

ZN,SN2

∑

ǫN≤i≤(1−ǫ)N

∑

η:ηx=i
max{ηy :y 6=x}≤N−i−ℓN

mη
⋆

a(η)
,

which can be re-written as

NαCǫ

ZN,SN2

∑

ǫN≤i≤(1−ǫ)N

m⋆(x)i

a(i)a(N − i)

{

(N − i)α
∑

ζ∈EN−i,S\{x}(ℓN )

mζ
⋆

a(ζ)

}

·

By Lemma 3.2 for the expression inside braces, last expression is bounded above
by

Cǫ m⋆(x)ǫN

ZN,S N2 ℓα−1
N

{

Nα
∑

ǫN≤i≤(1−ǫ)N

1

a(i)a(N − i)

}

·

By Lemma 3.2 once more and Proposition 2.1 we obtain the desired result. �

Fix a nonempty subset S1 ( S and denote S2 := S \ S1 6= ∅. We define the
function FS1 : EN → R as

FS1(η) :=
∑

x∈S1

Fx(η) .

Let us define the following subsets of EN

Dx
N := {η ∈ EN : ηx ≥ N − 3ℓN} , x ∈ S ,

so that Ex
N ⊂ Dx

N , x ∈ S⋆. It follows from (5.5) that if η ∈ Dx
N for some x ∈ S then

FS1(η) = 1{x ∈ S1} = FS1(σzwη) , (5.8)
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for every z, w ∈ S and every N large enough. In particular,

FS1 ∈ CN

(

⋃

x∈S1

Dx
N ,

⋃

y∈S2

Dy
N

)

.

We shall use FS1 to get an upper bound for capN

(

∪x∈S1 Dx
N ,∪y∈S2Dy

N

)

.
We first claim that for any N large enough,

FS1(σzwη) = 1 = FS1(η) for all η ∈
⋃

x,y∈S1

I
xy
N and z, w ∈ S . (5.9)

To prove this claim, fix x 6= y in S1. By (5.5), (5.4), for η/N ∈ Lxy
ǫ ,

FS1(η) = Fxy(η) + Fyx(η) . (5.10)

Recall from (5.2) the enumeration of S defined according to the values of fxy.
Let z1, . . . , zκ and w1, . . . , wκ be such enumerations obtained from fxy and fyx,
respectively. Since fxy + fyx ≡ 1, we can choose the enumerations in such a way
that zn+1 = wκ−n, 0 ≤ n ≤ κ−1. With this convention, an elementary computation
shows that

Fxy(η) + Fyx(η) =

κ−1
∑

j=1

{fxy(zj) − fxy(zj+1)}
(

F j
xy(η) + Fκ−j

yx (η)
)

.

By (5.1), the previous expression is equal to

κ−1
∑

j=1

{fxy(zj) − fxy(zj+1)} = 1 .

Claim (5.9) follows from this identity and (5.10) since I
xy
N ⊂ Lxy

ǫ for N sufficiently
large.

For each subset A ⊆ EN and function F : EN → R, let

DN(F ; A) :=
1

2

∑

η∈A

∑

z,w∈S

µN (η)g(ηz)r(z, w)
{

F (σzwη) − F (η)
}2

.

With this notation, Lemma 5.2 can be stated as

DN (Fx; EN \ Ix
N) ≤ Cǫ m⋆(x)ǫN

Nα+1 (ǫ ℓN )α−1
∀x ∈ S .

By Cauchy-Schwarz inequality,

DN (FS1 ; EN \ ∪z∈S1Iz
N ) ≤ |S1|

∑

x∈S1

DN (Fx; EN \ ∪z∈S1Iz
N )

≤ |S1|
∑

x∈S1

DN (Fx; EN \ Ix
N ) .

Therefore, since ℓN ↑ ∞, it follows from Lemma 5.2 that

lim
N→∞

Nα+1 DN (FS1 ; EN \ ∪z∈S1Iz
N ) = 0 . (5.11)

It remains to estimate DN (FS1 ;∪z∈S1Iz
N). By definition of Iz

N , z ∈ S1, and by
(5.9),

DN

(

FS1 ;
⋃

z∈S1

Iz
N

)

= DN

(

FS1 ;
⋃

x∈S1

y∈S2

I
xy
N

)

=
∑

x∈S1

∑

y∈S2

DN

(

FS1 ; Ixy
N

)

.
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The last identity follows from (5.8) and the relation

I
x1y1

N ∩ I
x2y2

N ⊆
⋃

z∈S

Dz
N for all x1, x2 ∈ S1 and y1, y2 ∈ S2 .

Therefore, by (5.5) and (5.4) we finally conclude that

DN

(

FS1 ;
⋃

z∈S1

Iz
N

)

=
∑

x∈S1

∑

y∈S2

DN

(

Fxy; Ixy
N

)

. (5.12)

We now provide an estimate for each term in this sum. To derive this bound, in
addition to the properties already imposed to the function φ, we also require that

sup
{

φ′(u) : u ∈ [0, 1]
}

≤ 1 +
√

ǫ (5.13)

and

sup
{ φ(u)

u − ǫ
: u ∈ [2ǫ, 1]

}

≤ 1 +
√

ǫ . (5.14)

The first requirement can easily be accomplished since (1+
√

ǫ) times the length of
the interval [3ǫ, 1 − 3ǫ] is strictly greater than 1 for ǫ small enough. For (5.14), it
suffices that φ(u) ≤ (u − ǫ)(1 +

√
ǫ) for all u ∈ [3ǫ, 1] because φ vanishes on [0, 3ǫ].

Since (u− ǫ)(1 +
√

ǫ) > 1 for u = 1 − 3ǫ and every ǫ small enough, it is possible to
define a smooth function φ satisfying (5.14) without violating the other previously
imposed properties.

According to the above discussion, in what follows we suppose that ǫ is an
arbitrary number in (0, ǫ0] for a suitably chosen ǫ0 > 0 and that φ satisfies the
additional properties (5.13) and (5.14).

Proposition 5.3. For any x, y ∈ S, x 6= y,

lim sup
N→∞

Nα+1DN (Fxy; Ixy
N ) ≤ (1 +

√
ǫ)2α+1

M⋆κ⋆IαΓ(α)
capS(x, y)1{x, y ∈ S⋆} .

Proof. Let x = z1, z2, . . . , zκ = y be the enumeration established in the definition
of Fxy, so that fxy(zn) ≥ fxy(zn+1), 1 ≤ n ≤ κ − 1. Fix two different sites zi 6= zj

in S with 1 ≤ i < j ≤ κ. By definition of Fxy,

Fxy(σzizj η) − Fxy(η) =

j−1
∑

n=i

(

fxy(zn) − fxy(zn+1)
)

{Fn
xy(σ

zizj η) − Fn
xy(η)} .

Thus, by the Cauchy-Schwarz inequality, the sum
∑

η∈I
xy

N

µN (η)g(ηzi
)r(zi, zj)

{

Fxy(σzizj η) − Fxy(η)
}2

(5.15)

is bounded above by {fxy(zi) − fxy(zj)} times

j−1
∑

n=i

(

fxy(zn) − fxy(zn+1)
)

∑

η∈I
xy
N

µN (η)g(ηzi
)r(zi, zj)

{

Fn
xy(σzizj η) − Fn

xy(η)
}2

.

Performing the change of variables ξ = η − dzi
, the second sum above is less than

m⋆(zi)r(zi, zj)
Nα

ZN,S

∑

ξ∈Axy
N

mξ
⋆

a(ξ)

{

Fn
xy(ξ) − Fn

xy(ξ + dzi
)
}2

,
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where Axy
N := {ξ ∈ EN−1,S : ξx + ξy ≥ N −2ℓN}. So far, we have shown that (5.15)

is bounded above by m⋆(zi)r(zi, zj)N
αZ−1

N,S{fxy(zi) − fxy(zj)} times

j−1
∑

n=i

(

fxy(zn) − fxy(zn+1)
)

∑

ξ∈Axy

N

mξ
⋆

a(ξ)

{

H
( 1

N
+

n
∑

r=1

ξzr

N

)

− H
(

n
∑

r=1

ξzr

N

)}2

.

Fix some i ≤ n < j. The second sum in the above expression may be re-written as

2ℓN
∑

m=0

∑

ζ∈Em,S\{x,y}

mζ
⋆

a(ζ)

∑

ǫN≤k≤(1−2ǫ)N

m⋆(x)km⋆(y)N−m−k

a(k)a(N − m − k)

{

H
(

dk+1(ζ)
)

− H
(

dk(ζ)
)

}2

, (5.16)

where

dk(ζ) :=
k

N
+ 1{n ≥ 2}

n
∑

r=2

ζzr

N
, ǫN ≤ k ≤ (1 − 2ǫ)N .

To keep notation simple let φk stand for φ(dk(ζ)). By the Cauchy-Schwarz inequal-
ity, the last expression is less than {m⋆(x)m⋆(y)}ǫNN−2αI−2

α times

2ℓN
∑

m=0

∑

ζ∈Em,S\{x,y}

mζ
⋆

a(ζ)

(1−2ǫ)N
∑

k=ǫN

∫ φk+1

φk

uα(1 − u)α du

∫ φk+1

φk

uα(1 − u)α

( k
N )α(1 − k+m

N )α
du .

Since m ≤ 2ℓN then, for all N large enough, the last integral above is less than

{φk+1 − φk}
(

sup
u∈[0,1]

{φ(u)/(u − ǫ)}
)2α ≤ 1

N
(1 +

√
ǫ)2α+1 .

The last inequality follows from assumptions (5.13) and (5.14). Therefore, we
conclude that (5.16) is bounded above by

{m⋆(x)m⋆(y)}ǫN(1 +
√

ǫ)2α+1

IαN2α+1

2ℓN
∑

m=0

∑

ζ∈Em,S\{x,y}

mζ
⋆

a(ζ)
,

which in turn is bounded by

ZSΓ(α){m⋆(x)m⋆(y)}ǫN (1 +
√

ǫ)2α+1

κ⋆ΓxΓyIαN2α+1
.

Hence, we have shown that (5.15) is bounded above by

m(zi)r(zi, zj){fxy(zi)−fxy(zj)}2
(ZSΓ(α){1 +

√
ǫ}2α+1

M⋆κ⋆ZN,SΓxΓyIα

)

{m⋆(x)m⋆(y)}ǫNN−α−1 .

In a similar way we can get the same upper bound for (5.15) if we suppose
instead that j < i. The assertion of the proposition follows from this estimate and
Proposition 2.1. �

We are now in a position to prove Proposition 5.1. Let S1
⋆ := S1 ∩ S⋆, S2

⋆ :=
S2 ∩ S⋆ and suppose they are both nonempty sets. Since

capN

(

EN (S1
⋆), EN (S2

⋆)
)

≤ capN

(

⋃

x∈S1

Dx
N ,

⋃

y∈S2

Dy
N

)

≤ DN(FS1 ) ,
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it follows from (5.11), (5.12) and Proposition 5.3 that

lim sup
N→∞

Nα+1capN

(

EN (S1
⋆), EN (S2

⋆)
)

≤ 1

M⋆κ⋆IαΓ(α)

∑

x∈S1
⋆,y∈S2

⋆

capS(x, y) ,

after letting ǫ ↓ 0. Theorem 2.2 follows from Proposition 5.1 and Proposition 4.1.

6. Proof of Theorem 2.4

In [2], we reduced the proof of the metastability of reversible processes to the
verification of three conditions, denoted by (H0), (H1) and (H2). The proof of
condition (H1) is similar to the one presented in [3] for zero range processes on
complete graphs. However, in the case where m is not uniform, some modifications
are needed to handle sites not in S⋆. This is the only reason for which we have
introduced the sequences bN(z), z ∈ S \ S⋆ and the respective condition in (2.10).

The following notation will be used throughout this section. For each x ∈ S⋆,

let ξx
N ∈ EN be the configuration with N particles at x and let Ĕx

N represent the
set EN (S⋆ \ {x}).

Condition (H2) follows immediately from (3.2) since µN (Ex
N ) → 1/κ⋆ for every

x ∈ S⋆:

lim
N→∞

µN (∆N )

µN (Ex
N )

= 0 , ∀x ∈ S⋆ . (H2)

Fix a configuration η in Ex
N . Since

∑

y 6=x ηy ≤ ℓN and ηz ≤ bN , for z ∈ S \ S⋆,
by the explicit form of µN ,

µN (η) ≥ C0

∏

z∈S\S⋆

m⋆(z)ηz

∏

y∈S\{x}

1

a(ηy)

≥ C0

ℓ
α(κ−1)
N

∏

z∈S\S⋆

m⋆(z)bN (z) .

(6.1)

Hereafter, C0 stands for a constant which does not depend on N ≥ 1 and whose
value may change from line to line. To estimate the capacity, capN ({η}, {ξx

N}) we

consider a path η(j), 0 ≤ j ≤ p, from η(0) = η to η(p) = ξx
N obtained by moving to

x, one by one, each particle. Since there are at most ℓN particles to move, we can
take a path such that p ≤ κ ℓN . Let F be an arbitrary function in CN({η}, {ξx

N}).
By Cauchy-Schwarz inequality and the explicit expression of the Dirichlet form,

1 =
{

p−1
∑

j=0

[

F (η(j+1)) − F (η(j) )
]

}2

≤ C0 DN(F )

p−1
∑

j=0

1

µN (η(j))
·

Therefore, by (6.1),

capN ({η}, {ξx
N}) ≥ C0

ℓ
1+α(κ−1)
N

∏

z∈S\S⋆

m⋆(z)bN (z) .

The extra factor ℓN comes from the length of the path. Condition (H1) follows
now from this estimate, Theorem 2.2 and condition (2.10):

lim
N→∞

capN (Ex
N , Ĕx

N )

infη∈Ex
N
{capN ({η}, {ξx

N})} = 0 , ∀x ∈ S⋆ . (H1)
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Finally condition (H0) follows from Theorem 2.2 as we show below. Denote by

RE
⋆

N (·, ·) the jump rates of the trace process {ηE
⋆
N

t : t ≥ 0} defined in Section 2. For
x 6= y in S⋆, let

rN (x, y) :=
1

µN (Ex
N )

∑

η∈E
x
N

ξ∈E
y
N

µN (η)RE
⋆

N (η, ξ) .

By Lemma 6.8 in [2],

µN (Ex
N ) rN (Ex

N , Ey
N ) =

1

2

{

capN

(

Ex
N , Ĕx

N

)

+ capN

(

E
y
N , Ĕ

y
N

)

− capN

(

EN ({x, y}) , EN (S⋆ \ {x, y})
)}

.

Therefore, by Theorem 2.2, since µN (Ex
N ) converges to κ−1

⋆ for all x in S⋆,

lim
N→∞

N1+αrN (Ex
N , Ey

N ) =
capS(x, y)

M⋆ Γ(α)Mα
, ∀x, y ∈ S⋆ , x 6= y . (H0)

This proves Theorem 2.4 as a consequence of Theorem 2.10 in [2].
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