An elementary proof of an inequality of Maz'ya involving $L^1$-vector fields - Archive ouverte HAL Access content directly
Journal Articles Contemporary mathematics Year : 2011

An elementary proof of an inequality of Maz'ya involving $L^1$-vector fields

Abstract

We give a short elementary proof of the inequality \begin{equation*} \| D (-\Delta)^{-1} {\mathbf f}\|_{L^q(|x|^{n(q-1)-q}\, dx)}\le c(\|{\mathbf f}\|_{L^1}+\|\nabla (-\Delta)^{-1}\,\text{div}\, {\mathbf f}\|_{L^1}), \end{equation*} $\forall\, {\mathbf f}\in L^1({\mathbb R}^n ; {\mathbb R}^n)$, $\forall\, 1\le q$<$n/(n-1)$, essentially established by Maz'ya (J. Eur. Math. Soc. 2010).
Fichier principal
Vignette du fichier
Mazya4.pdf (92.42 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00425043 , version 1 (19-10-2009)

Identifiers

Cite

Pierre Bousquet, Petru Mironescu. An elementary proof of an inequality of Maz'ya involving $L^1$-vector fields. Contemporary mathematics, 2011, 540 (Nonlinear partial differential equations), pp.59-63. ⟨10.1090/conm/540/10659⟩. ⟨hal-00425043⟩
273 View
221 Download

Altmetric

Share

Gmail Facebook X LinkedIn More