Quantised Angular Momentum Vectors and Projection Angle Distributions for Discrete Radon Transformations - Archive ouverte HAL
Communication Dans Un Congrès Lecture Notes in Computer Science Année : 2006

Quantised Angular Momentum Vectors and Projection Angle Distributions for Discrete Radon Transformations

Résumé

A quantum mechanics based method is presented to generate sets of digital angles that may be well suited to describe projections on discrete grids. The resulting angle sets are an alternative to those derived using the Farey fractions from number theory. The Farey angles arise naturally through the definitions of the Mojette and Finite Radon Transforms. Often a subset of the Farey angles needs to be selected when reconstructing images from a limited number of views. The digital angles that result from the quantisation of angular momentum (QAM) vectors may provide an alternative way to select angle subsets. This paper seeks first to identify the important properties of digital angles sets and second to demonstrate that the QAM vectors are indeed a candidate set that fulfils these requirements. Of particular note is the rare occurrence of degeneracy in the QAM angles, particularly for the half-integral angular momenta angle sets.
Fichier principal
Vignette du fichier
dgci2006-2.pdf (661.1 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00422210 , version 1 (06-10-2009)

Identifiants

  • HAL Id : hal-00422210 , version 1

Citer

Imants Svalbe, Chandra Shekhar, Andrew Kingston, Jean-Pierre Guedon. Quantised Angular Momentum Vectors and Projection Angle Distributions for Discrete Radon Transformations. 13th International Conference on Discrete Geometry for Computer Imagery, Oct 2006, Szeged, Hungary. pp.134-145. ⟨hal-00422210⟩
75 Consultations
132 Téléchargements

Partager

More