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Abstract. A quantum mechanics based method is presented to generate
sets of digital angles that may be well suited to describe projections
on discrete grids. The resulting angle sets are an alternative to those
derived using the Farey fractions from number theory. The Farey angles
arise naturally through the definitions of the Mojette and Finite Radon
Transforms. Often a subset of the Farey angles needs to be selected when
reconstructing images from a limited number of views. The digital angles
that result from the quantisation of angular momentum (QAM) vectors
may provide an alternative way to select angle subsets. This paper seeks
first to identify the important properties of digital angles sets and second
to demonstrate that the QAM vectors are indeed a candidate set that
fulfils these requirements. Of particular note is the rare occurrence of
degeneracy in the QAM angles, particularly for the half-integral angular
momenta angle sets.

Keywords: Discrete projection, tomography, digital angles, finite Radon
transforms.

1 Introduction

The ultimate quality with which digital images can be reconstructed from pro-
jected views is highly sensitive to the selection of the viewing angles [1, 2, 3].
Conventional CT view angles, Figure 1(a), are constrained by the configuration
of the x-ray source and detectors. In contrast, digital image angles are con-
strained only by pixellation of the discrete array on which the image is to be
reconstructed, Figure 1(b). Simply dividing an angle interval into equal or in-
tegral steps does not provide descriptive digital angle sets. This becomes even
more critical for asymmetric digital images that have one or more elongated
axes. True digital angle sets should satisfy the following properties:

1. Generate a set of O(N) discrete angles for a symmetric N × N array (to
balance O(N) view angles with O(N) projected elements in each view. For
an asymmetric discrete array, far fewer than N angles would be needed).

2. These angles should be constructed in a way that accommodates the integer
spacing of pixels.
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(a) (b)

Fig. 1. (a) real space CT projections of a continuous object at three analogue angles.
(b) discrete projections of a simple digital object taken at four “grid-friendly” angles.

3. A digital angle set should have the properties of being uniformly distributed
over the range 0 ◦ − 180 ◦, or at least be locally uniform over a more limited
angle range.

4. Be increasing; any new angle set for N ′ > N should contain all of the previ-
ously generated angles for N , with each resulting angle remaining unique.

A digital angle set that satisfies these criteria is derived from the Farey se-
ries [4]. A different scheme to span analogue real and Fourier spaces to create
digital angles was developed through the pseudo-polar Fourier transform scheme
of [5]. The Farey angles are important here as they arise intrinsically in the Mo-
jette Transform [6] and the Finite Radon Transform (FRT) [7]. The discrete
angle properties of these transforms are reviewed in Section 2.

This paper examines an alternative set of angles designed for use on a discrete
grid that are derived from the spatial quantisation of the 3D angular momentum
in quantum physics. We will show that the digital angle set derived from the
QAM vectors satisfy the above criterion. The idea of using an analogue version
of the quantum vector spaces has already been utilised by [8] to represent polar
colour variables.

This “naturally” occurring quantum angle set has attractive properties that
seem to be relatively unexplored. The quantised angular momenta (QAM) an-
gle distribution has the property of being increasing and appears to be locally
uniform, with a slow and smooth decrease in density at larger angles. The set
of all possible QAM angles is almost, but not quite, unique. Understanding the
formation and distribution of the small number of redundant QAM angles is im-
portant when choosing appropriate digital projection and reconstruction angles.
This alternative set of quantum-based angles may improve the attainable qual-
ity of digital image reconstructions and help optimise the number of projected
views required, particularly for the projection of asymmetric digital objects.
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This paper is organised as follows: a review of the Farey-based digital angles
and their relationship to the Mojette and FRT transforms is presented in Sec-
tion 2. Example sets of QAM angle vectors are compared to similar sets of Farey
angles in Section 3. Section 4 describes the origin of integer and half-integer
quantisation of angular momentum. Section 5 shows how digital angles can be
obtained from these QAM vectors. The remainder of the paper demonstrates
the properties of the QAM angles against the requirements 1-4 outlined above;
Section 6 demonstrates the angle set has extremely low degeneracy and Section 7
explores the local density and range of the QAM angles.

2 Existing Digital Angle Schemes

An N × N square (or hexagonal) regular discrete array generates a natural set
of projection angles [9, 10]. These unique angles have tangents that are based
on the ratios of relatively prime integers belonging to members of the set of
Farey fractions FN ranging from 1/N up to 1/1. Taking the arctangent of these
fractions produces a set of angles lying between 0 ◦ and 45 ◦. An example showing
F4 = 0, 1

4 , 1
3 , 1

2 , 2
3 , 3

4 , 1 for N = 4 has been depicted in Figure 2(a). The density
of Farey angles is remarkably even and exhibits no degeneracy or replication of
any angles as the integer N increases to infinity. Each Farey angle is defined by
a unique vector θab that links the origin (0, 0) to a co-prime pair of Cartesian
coordinates (a, b). Farey angles ranging from 0 ◦ to 180 ◦ degrees are obtained
using (a, b), (b, a), (−a, b) and (−b, a) as four-fold symmetric vectors oriented at
θab, 90-θab, 90+θab and 180-θab respectively, as shown for F20 in Figure 2(b).
Any N ×N image can be reconstructed exactly if N > 1+max(|ai|, |bi|) for any
set of projections taken at rational angles ai/bi. The Katz criterion [11] ensures
that ambiguous “ghost functions” do not exist in projections of the reconstructed
image space (and hence that the reconstructed image is unique).

The Mojette transform developed in [6] is a generalisation of the FRT [7].
Many properties of the FRT have been investigated and applied by Kingston and
Svalbe [12]. The Mojette and FRT formalisms both map between digital images
and digital projections. This is done exactly and invertibly, with no interpolation
(hence preserving image sharpness) by a deliberate selection of grid-dependent
digital view angles and projection paths.

The FRT restricts N to be prime. This endows the projections with the prop-
erty of minimal information redundancy [13, 14] and enables the use of very
simple projection and reconstruction algorithms. Each 2D square array of prime
size p has a pre-determined set of p + 1 rational slopes that define the digital
projection orientations. These orientations are a subset of the Farey series for
FN , as shown in Figure 2(c). The subset of Farey fractions (a/b) that are selected
at each prime size p has its own interesting behaviour, as discussed in [15]. The
FRT has robust, efficient real-space and Fourier-space reconstruction algorithms
based on simple addition. It automatically satisfies the Katz reconstruction
criterion.
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(a) (b) (c)

Fig. 2. (a) Farey angles (F4) made of co-prime integer ratios a/b (a < b). (b) the set
F20 depicted as co-ordinates (a, b) giving θab (grey points), and the reflected set (b, a)
giving 90 ◦ − θab (black points). (c) The first half (0 ◦ < θab < 90 ◦) of the FRT angle
set is a subset of the extended Farey set, shown here for p = 379 and F20.

The Mojette Transform allows much more flexibility in the shape and size
of the discrete array chosen to represent some discrete object. A set of Farey
vectors, tailored to satisfy the Katz criterion, are selected for projection orien-
tations based on the shape and size of the array. Some degree of information
redundancy arises in this more general Mojette projection representation. How-
ever this redundancy may be exploited usefully in the design of very efficient
data transmission, storage and encryption schemes [16, 17]. The algorithms to
reconstruct images from Mojette projections [6] are more complex than for the
FRT, largely because of the increased level of redundancy.

3 Quantised Angular Momentum Directions

The 3D angular momentum vector in quantum physics also generates a “natural”
set of discrete angles. The angular momentum vector (j) can only take on values
that are integer or half-integer multiples of the reduced Planck’s constant (h̄).
When this vector is aligned with respect to an externally imposed reference
direction (such as that of the total local magnetic field), the magnitude of the z-
projection of j can change only in integer increments, Figure 3(a). This alignment
constraint results ultimately from the quantisation of stable energy states for
bound particles, and the sensitivity of the state energy to the orientation of the
particle orbit.

In atoms and nuclei, the use of quantum mechanics is essential. There the
observed magnitude of j ranges from 0 to 8 as electron or nucleon orbits are
filled in the atoms and nuclei from hydrogen to uranium. The correspondence
principle argues that, in the classical (large angular momentum) limit, the 3D
vector j is equally free to take any alignment direction with respect to any
z-axis. The spectra of vibrational modes which arise as allowed excitations in
finite discrete lattices is another relevant physical example of where a set of
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(a) (b) (c)

Fig. 3. (a) Depiction of the allowed quantum angular momentum (QAM) vector pre-
cession orientations for angular momentum j = 3. (b) The quantised z-projection of
the QAM vectors for j = 5. (c) The full integer j QAM angle set for |j| ≤ 19.

discrete angle trajectories emerges naturally from the underlying matrix of the
data structure [18].

The QAM vectors provide a locally smooth and reasonably uniform global
coverage of angle space, particularly over the interval 0 ◦−45 ◦, for large angular
momentum values, Figure 3(c). At angles closer to 90 ◦, the density decreases
steadily and this property may find application in the limited field of view case
encountered when reconstructing SPECT data using cone-beams or for PET/CT
tomosynthesis.

The size of the set of QAM angle vectors increases as the magnitude of the
maximum angular momentum j is increased, adding 2j + 1 vectors when j − 1
increments to j. In the main, the added vectors are new and do not occur at
angles generated previously by smaller values of j. There are, however, some
values of j that do result in degenerate angles.

The occurrence of such replicated angles in the QAM set is rare, even more
so for the half-integer QAM case. In this paper, these relatively rare degenerate
angles will be examined with a view to being able to predict and quantify any
clumping in the local smoothness of the QAM angle set. Quite localised non-
uniformities in the density of angles also occur for the Farey sets [10]. The
analytic work of [19] has examined and modelled the details of those variations.

4 Quantised Angular Momentum

Classical angular momentum is a measure of the “turning moment” of a moving
object about some axis: it is a vector quantity of magnitude proportional to the
radius r of the object from the axis and to the linear momentum p = mv of
the object, where v is the velocity of the particle which has mass m. Formally,
L = r × p, with the direction of vector L being normal to the plane defined by
the vectors r and p. In classical mechanics, the direction of L is free to take any
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direction in space and |L| is a continuous variable, given that values for r and p

are unconstrained.
In quantum mechanics, the measurable momentum and location of all objects

are subject to the Heisenberg Uncertainty Principle that reflects the “graininess”
of space-time and the particles that can exist within it. Momentum and position
cannot be simultaneously specified to a precision below the value of the reduced
Planck’s constant (h̄). This automatically imposes an uncertainty on the angular
momentum, it being a product of position and linear momentum. This uncer-
tainty means that the angular momentum vector can only be observed to change
by amounts proportional to h̄.

If we take a quantised angular momentum vector L in 3D (x, y, z) space with
components Lx, Ly, Lz, then the uncertainty in L means that if the direction
of Lz is fixed, the vector must “precess” (with unknown phase) around the z-
axis so that Lx and Ly are uncertain, Figure 3(a). The uncertainty in L, and
the expression for its magnitude, emerges naturally in quantum mechanics after
separation of the radial and angular part in the solution to the Schrödinger
equation when applied to any particle constrained by a potential well.

In quantum mechanics, all fundamental particles (like electrons) have an in-
ternal angular momentum (called spin S). This spin is also quantised, so that
changes in spin must also occur in h̄ steps. Spin can be either a symmetric or
anti-symmetric component of the quantised particle’s wavefunction. Fermion ob-
jects have half-integral spin (S = (n + 1/2)h̄) whilst bosons have integral spin
(S = nh̄) or positive integer n. It appears that the fermion and boson QAM
distributions, whilst being very similar, turn out to have remarkably different
angle degeneracy properties. A particle with rotational and spin angular mo-
mentum has a total angular momentum j, subject to the same uncertainty and
quantisation, with j = L + S.

The length of the quantised angular momentum vector is given by |j| =
√

j(j + 1)h̄. It is the j(j + 1), rather than a j2 term, that endows interest-
ing properties to the QAM angle distribution. The direction of j is defined by
the angle θ measured in cylindrical coordinates relative to the direction of the
xy plane. The z-projection of j, jz is constrained to have |jz | = mh̄, where m is
integral for integer j and half-odd integral for half-integer j values.

5 QAM Vectors as Points in the Plane

If we denote the radius of the projection of the vector j on to the x-y plane as
rm, then rm =

√

j(j + 1) − m2, see Figure 4(a). The angle θ of the vector j from
the origin to (rm, m) is given by the arctangent of the gradient, taken here as
g(j, m) = m/rm.

The equations for lines of constant |m| form simple parabolas, for example,
rm =

√
j for |m| = j. The half-integer points fall exactly in between the integer

points, as both sets of allowed (rm, m) values lie on the same quadratic curves
as seen in Figure 3(c).



140 I. Svalbe et al.

The rm values will not, in general, be integers, but can be scaled and rounded
to the nearest integer at any required precision. Here (rm, m) have the same role
as the (a, b) integers used in Section 2 for the Farey and FRT examples. The
z-projection m is an integer or half-integer but in either case changes in integer
steps. As rm may be irrational, the exact process used to convert this value to
an integer may be important in any application.

(a) (b)

Fig. 4. (a) Definition of the QAM projections m and rm for a given j. (b) Plot of the
density of the QAM angle distribution for j = 199/2. Each white point represent a
selected angle.

For j ≫ 1,
√

j(j + 1) asymptotes to j + 1
2 (and so can never be an integer,

nor an exact 1
2 integer). Hence the direction of any QAM vector j cannot ever

be aligned exactly along the z-axis, as jz = m must be an integer or half-
integer. The maximum angle of θ occurs when m = j, so that rm =

√
j and

g = tan(θ) = j/
√

j =
√

j. The maximum angle is 88.7 ◦ for j = 2000 (and
reaches only 70.5 ◦ for j = 8, for a j typical of the atomic case).

The minimum angle for integer QAM is zero degrees, which occurs when
m = 0 with rm =

√

j(j + 1). The minimum half integer angle occurs at |m| = 1
2 .

For large j, the minimum gradient g then approaches 1/(2j). This corresponds
to a minimum angle of 1.8 ◦ for j = 15/2, the typical maximum half integer j
for the atomic case, falling to 0.014 ◦ when j = 3999/2.

6 QAM Angle Degeneracy

The QAM angle set can adapt to the size and shape of a discrete array, as |j|
can be matched to the array size and |m| can be used to accomodate asymmetry
in the array shape. The QAM digital angles then meet the design properties
1,2 and 3 that are outlined in Section 1. Are there integer j vectors that link
the origin to points (rm, m) and (rm′ , m′) that have the same angle? For this to
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be true, the values j and j′ (and hence m′ and m, or rm′ and rm) must scale
according to

(m′/m)2 =
j′(j′ + 1)

j(j + 1)
. (1)

The next section examines integer j values where (1) is satisfied.

6.1 Degeneracy of the QAM Angles for Integer j

For rm = nm, that is a gradient of g = m/(nm) = 1/n, (i.e. 1 : n), then
j(j +1)−m2 = (nm)2 means that N =

√

1 + 4(n2 + 1)m2 needs to have integer
solutions, where N = 2j+1. N also corresponds, incidentally, to the total number
of allowed QAM vector projections for a given j.

Then j(j + 1) = (n2 + 1)m2 = (n2 + 1)k2l2, where m = kl, with k, and l
integers. We choose to factor m into a product of two integers, kl, because then
we can identify j and j + 1 as separate squared quantities that enable m to
be an integer. The values of k and l (and hence j and m) can be determined
recursively, starting with the values k = l = 1. Then

j = (n2 + 1)k2 and j + 1 = l2. (2)

The ratio of k/l approximates 1/
√

n2 + 1 because

l2 = (n2 + 1)k2 + 1. (3)

The values obtained for k and l turn out to be exceptionally good integer ap-
proximations for the irrational number

√
n2 + 1. The next integral solution at

j′, m′ turns out to given by

j′ = (n2 + 1)k′2 and j′ + 1 = l′2 with m′ = k′l′, where (4)

k′ = nk + l and l′ = (n2 + 1)k + nl. (5)

The recursive relationship (5) determines all of the redundant solutions for gra-
dients (1 : n). Table 1 shows example redundant (j, m) values for the gradients
1 : 1 and 1 : 3.

Finding integers k,l that give integer values of rm has a parallel to the approx-
imation of surds (such as a+

√
b) using continued fractions, where the sequence of

continued fraction values is periodic. For example, the value of
√

2−1 (which cor-
responds to

√

(n2 + 1) =
√

2 for n = 1) can be found as 1/(2+1/(2+1/(2+ . . .),
which can be written recursively as ar+1 = 1/(2 + ar) where a0 = 0. The frac-
tions k/l used to find (j, m) values that each have exactly the same gradient
1 : n can also be found using ar+1 = 1/(2n + ar) and adding n to each fraction.

The j values that replicate a given gradient have quadratic separation in j.
The gap between the next (j′, m′) with the same slope as (j, m) grows very
rapidly. The ratio or scale, s, between successive values of j is given by m′/m
(or j′/j or N ′/N) and can be shown to be s = 2n2 + 1 + 2n

√
n2 + 1.
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Table 1. Examples of degenerate QAM angles for integer j and gradients of 1 : n

g = 1 : 1 j(j + 1) = (2)k2l2

N j m k l

3 1 1 1 1

17 8 6 2 3

99 49 35 5 7

577 288 204 12 17

3363 1681 1189 29 41

19601 9800 6930 70 99

g = 1 : 3 j(j + 1) = (10)k2l2

N j m k l

19 9 3 1 3

721 360 114 6 19

27379 13689 4329 37 110

The ratios for gradients n : 1 have the same values of rm and m in exchanged
roles as for 1 : n, so these angles and their j,m values can be found from the
1 : n result. The tabulated N and j values for n : 1 are the same as for 1 : n,
but the value of m is just n times that for 1 : n.

For g = p : q (as well as g =
√

p/q) there is also a similar sparse redundancy
in the representation of angles. Results for g = 3 : 5 are given in Table 2.

Table 2. QAM angle redundancy for the gradient 3:5

g = 3 : 5 j(j + 1) = (34/9)k2l2

N j m k l

35 17 9 9 1

2449 1224 630 18 35

The total number of redundant angles for the integer QAM case appears to
increase approximately linearly with increasing j. For 0 < j ≤ 2000, we found
just 242 redundant angles in the integer QAM angle distribution out of a total
number of j(j + 1)/2 = 2, 001, 000 angles.

6.2 Degeneracy of the j QAM Angles for Half-Integer j

For half integer QAM, j and m are both required to be odd, so we write:

(2n + 1)(2n + 3)/4 − (2m + 1)2/4 = r2
m, (6)

where n and m are any positive integers. Then r2
m = (n2−m2)+(2n−m)+1/2,

so that rm can never have integer values for the half-integer QAM case. For the
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gradient to be degenerate, i.e. g = m/rm = m′/rm′ , then [j(j+2)/4−m2/4]m′2 =
[j′(j′ + 2)/4 − m′2/4]m2, and

(m′/m)2 =
j′(j′ + 2)

j(j + 2)
. (7)

Condition (7) turns out to be much harder to satisfy than (1) for the integer
QAM case. Scaled solutions for j and j′ that give redundant angles are only
possible if j′ = α2j and j′ + 2 = β2(j + 2) with m′ = (αβ)m, and where α, β
are integral, which is similar to the constraint (4) for integer QAM.

For 0 < j ≤ 3999/2, we found only 16 redundant angles in the first 2 million
possible angles (as compared to 242 redundant angles for j up to 2000 for the
integer case). Note the repeated occurrence of the integers 845, 2023 and 3969
in Table 3. These integers have highly composite forms, for example 3969 =
34.72. If the half integer and integer angle distributions are pooled (this does not
occur in real quantum systems), the number of redundant angles increases, at
approximately double the integer rate, to reach a total of 510 redundancies for j
up to 2000. The QAM angle set hence satisfies the fourth digital angle property
as set out in Section 1.

Table 3. Degenerate values of j, m for half-integer QAM angles

G = m/rm G j,m j′,m′

0.101015 1/
√

2.72 9/2,1/2 3969/2, 399/2

0.127001 1/
√

2.31 7/2, 1/2 2023/2, 255/2

0.101499 1/
√

2.17 5/2, 1/2 845/2, 143/2

0.267261 1/
√

2.7 3/2, 1/2 243/2, 63/2

0.316228 1/
√

2.5 9/2, 3/2 3969/2, 1197/2

0.408248 1/
√

2.3 7/2, 3/2 2023/2, 765/2

0.581238 5/
√

2.37 9/2, 5/2 3969/2, 1995/2

0.588348 3/
√

2.13 5/2, 3/2 845/2, 429/2

0.707107 1/
√

2 1/2, 1/2 25/2, 15/2 and 361/2, 209/2

0.988849 7/(5
√

2) 9/2, 7/2 3969/2, 2793/2

1.224745
�

3/2 3/2, 3/2 243/2, 189/2

1.581139
�

5/2 5/2, 5/2 845/2, 715/2

1.870829
�

7/2 7/2, 7/2 2023/2, 1785/2

2.12132 3/
√

2 9/2,9/2 3969/2, 3591/2

7 Distribution of QAM Angles

The uniformity of the QAM angle distribution has been examined using the
same unevenness criterion (D) as used for the Farey angle set [10]. The QAM
sets are much more uneven than the Farey sets because of the smooth decrease
in angle density as the z-axis projected value of j increases. For the half integer
case at j = 199/2, D = 65.09 over 2203 angles (selected for m < rm and
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rm < j/
√

2 = 70.71 here, from a total of 5050 angles). For the Farey sequence
F86(1/86, 1/85, . . .85/86) which has 2273 angles, D = 2.106.

Figure 4(b) shows the density of m, rm points from the QAM distribution in
the 2D plane which satisfies the property 3 qiven in Section 1. Note that the
points “missing” for the low angles are reflections of the positions of the real
points at large angles.

8 Conclusions and Further Work

The QAM vectors produce an interesting set of digital angles with remarkably
little degeneracy, especially for the half-integer angular momenta where the con-
ditions required for integer-based solutions are harsher. In physical systems,
the QAM directions are limited to either whole or half-integral values, but the
above investigation can be extended to include angles for 1/3 (quark-like) or
other fractional quantisation values. More work is needed on how to best round
or interpolate the (often irrational) values of rm to integers when applying these
digital angle sets.
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