A Reinforcement Learning Approach to Interval Constraint Propagation - Archive ouverte HAL
Article Dans Une Revue Constraints Année : 2008

A Reinforcement Learning Approach to Interval Constraint Propagation

Résumé

When solving systems of nonlinear equations with interval constraint methods, it has often been observed that many calls to contracting operators do not participate actively to the reduction of the search space. Attempts to statically select a subset of efficient contracting operators fail to offer reliable performance speed-ups. By embedding the recency-weighted average Reinforcement Learning method into a constraint propagation algorithm to dynamically learn the best operators, we show that it is possible to obtain robust algorithms with reliable performances on a range of sparse problems. Using a simple heuristic to compute initial weights, we also achieve significant performance speed-ups for dense problems.
Fichier principal
Vignette du fichier
gj-constraints07.pdf (336.56 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00421423 , version 1 (02-10-2009)

Identifiants

Citer

Frédéric Goualard, Christophe Jermann. A Reinforcement Learning Approach to Interval Constraint Propagation. Constraints, 2008, 13 (1-2), p.206-226. ⟨10.1007/s10601-007-9027-7⟩. ⟨hal-00421423⟩
122 Consultations
286 Téléchargements

Altmetric

Partager

More