
HAL Id: hal-00421423
https://hal.science/hal-00421423v1

Submitted on 2 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Reinforcement Learning Approach to Interval
Constraint Propagation

Frédéric Goualard, Christophe Jermann

To cite this version:
Frédéric Goualard, Christophe Jermann. A Reinforcement Learning Approach to Interval Constraint
Propagation. Constraints, 2008, 13 (1-2), p.206-226. �10.1007/s10601-007-9027-7�. �hal-00421423�

https://hal.science/hal-00421423v1
https://hal.archives-ouvertes.fr

A Reinforcement Learning Approach

to Interval Constraint Propagation

Frédéric Goualard and Christophe Jermann
LINA, CNRS FRE 2729 – University of Nantes – France

2, rue de la Houssinière – BP 92208 – F-44322 Nantes cedex 3
{Frederic.Goualard|Christophe.Jermann}@univ-nantes.fr

Abstract

When solving systems of nonlinear equations with interval constraint
methods, it has often been observed that many calls to contracting oper-
ators do not participate actively to the reduction of the search space. At-
tempts to statically select a subset of efficient contracting operators fail to
offer reliable performance speed-ups. By embedding the recency-weighted
average Reinforcement Learning method into a constraint propagation
algorithm to dynamically learn the best operators, we show that it is pos-
sible to obtain robust algorithms with reliable performances on a range of
sparse problems. Using a simple heuristic to compute initial weights, we
also achieve significant performance speed-ups for dense problems.

1 Introduction

We consider the problem of finding tight enclosures for all the solutions of sys-
tems of nonlinear real equations1:

f1(x1, . . . , xn) = 0
. . .

fn(x1, . . . , xn) = 0
(1)

A successful approach associates interval domains to all variables and uses
interval arithmetic [20] in a combination of contracting operators—to tighten
the domains of the variables while retaining all solutions—and of an exploration
algorithm that recursively splits domains.

An effective implementation of contracting operators relies on interval first-
order methods, which start from the initial domains and then solve each of the
n unary equations (projections):

fi(I1, . . . , Ii−1, xi, Ii+1, . . . , In) = 0 (2)
1In the following, we will refer to Syst. (1) even when considering systems in which all

variables do not occur in all equations (sparse systems).

1

in turn, where Ij is the current interval domain for xj . This process is iterated
over all fis until a fixed-point is reached (or, until the domains computed for
the variables do not change too much).

For the linear case, the speed of convergence towards a solution depends
heavily on the initial order of equations and variables, which defines the transver-
sal, that is, the set of n projections (fi, xi) considered in Eq. (2). A classical
result states that equations and variables should be initially reordered so as to
make the corresponding coefficient matrix strictly diagonal dominant [23].

For the nonlinear case, it has been observed that nonlinear first-order meth-
ods are equally sensitive to the initial order of equations and variables that
defines the n projections considered. However, to our knowledge, there is no
sure-fire static method to select projections that ensures prompt convergence.
What is more, it appears [9, 11, 8] that selecting more than n projections may
sometime speed the solving process up.

The bc3 algorithm [4] studied in this paper associates the good principles
of first-order methods with a smart propagation algorithm devised by Mack-
worth [19] to ensure consistency in a network of relations. It also uses clever
numerical methods to reduce the computational burden of solving projections.

Contrary to standard first-order methods, bc3 considers all n2 possible pro-
jections instead of only n of them, thereby avoiding a bad choice of a transversal.
For sparse problems (those for which some variables do not occur in all equa-
tions), this is a reasonable strategy, since the number p of unary equations to
solve is of the order of n. On the other hand, for large dense problems (i.e.,
n2 À n and p ≈ n2), the number of univariate equations to solve makes this
approach computationally too expensive. In addition, depending on the prob-
lems, many projections may never lead to any tightening of the domains of
the variables, for reasons that are not clearly understood yet. To make things
worse, there may exist subsets of efficient projections, but only transiently at
some point in the computation process. Therefore, there is no point in trying
to statically select a subset of projections to consider in bc3.

In this paper, we embed the recency-weighted average [26] Reinforcement
Learning method into bc3 to dynamically select the most efficient projections
(that is, the ones leading to the maximum tightening of variables’ domains). We
experimentally show that the resulting algorithm outperforms bc3 for problems
where no static transversal exists. We also present an heuristic to initialize
weights associated to projections that leads to significant speed-ups with respect
to bc3 when considering large dense problems with a static transversal.

In order to be reasonably self-content, we sketch the principles of interval
constraint algorithms and we show the limits and weaknesses of bc3 in Section 2;
We present in Section 3 how to add the recency-weighted average (rwa) Rein-
forcement Learning method to bc3 to address its shortcomings, and we describe
the resulting algorithm, after having discussed how to fix the various parameters
arising from the use of rwa. Our new algorithm is compared with bc3 on a set
of standard problems in Section 4. Lastly, we compare our approach with pre-
vious related works in Section 5, and we outline directions for future researches
in Section 6.

2

2 Interval Constraint Solving

Classical iterative numerical methods suffer from defects such as loss of solutions,
absence of convergence, and convergence to unwanted attractors due to the use
of but a very small subset of the real numbers on computers: floating-point
numbers [13] (aka floats). At the end of the fifties, Moore [20] popularized the
use of intervals to control the errors made while computing with floats.

Interval arithmetic replaces floating-point numbers by closed connected sets
of the form I = [I, I] = {a ∈ R | I 6 a 6 I} from the set I of intervals, where I
and I are floating-point numbers. In addition, each n-ary real function φ with
domain Dφ is extended to an interval function Φ with domain DΦ in such a way
that the containment principle is verified:

∀A ∈ Dφ ∀I ∈ DΦ : A ∈ I =⇒ φ(A) ∈ Φ(I)

Example 1 The natural interval extensions of addition and multiplication are
defined by:

I1 + I2 = [I1 + I2, I1 + I2]

I1 × I2 = [min(I1I2, I1I2, I1I2, I1I2), max(I1I2, I1I2, I1I2, I1I2)]

Then, given the real function f(x, y) = x×x+y, we may define its natural inter-
val extension by f(x, y) = x×x + y, and we have that, e.g., f([2, 3], [−1, 5]) =
[3, 14].

Implementations of interval arithmetic use outward rounding to enlarge the
domains computed so as not to violate the containment principle, should some
bounds be unrepresentable with floating-point numbers [12].

Many numerical methods have been extended to use interval arithmetic [22,
24]. Given the system of nonlinear equations (1) and initial domains I1, . . . , In

for the variables, these methods are usually embedded into a branch-and-prune
algorithm BaP (see Algorithm 1) that manages a set of boxes of domains to
tighten. Starting from the initial box D = I1×· · ·×In, BaP applies a numerical
method “prune” to tighten the domains in D around the solutions of System (1).
It then bisects the resulting box along one of its dimensions whose width is larger
than some specified threshold ε. The BaP algorithm eventually returns a set
of boxes whose largest dimension has a width smaller than ε and whose union
contains all the solutions to Eq. (1). Note, however, that some boxes may
eventually contain zero, one, or more than one solution.

Interval nonlinear Gauss-Seidel is a possible implementation for prune. It
considers the n unary projections:

f
(1)
1 (x1, I2, . . . , In) = 0

. . .
f (n)

n (I1, . . . , In−1,xn) = 0

(3)

and uses any unidimensional root-finding method to tighten the domain of each
variable xi in turn. Using a unidimensional Newton-Raphson root-finder leads

3

to the Gauss-Seidel-Newton method [23], whose extension to intervals is the
Herbort-Ratz method [11].

Algorithm 1 Branch-and-Prune algorithm
[BaP] in: F = (f1, . . . , fn) : Rn → Rn

in: Din ∈ In
out: sol ⊂ In

begin
1 % Set of boxes to tighten further
2 boxset ← {Din}
3 % Set of solution boxes
4 sol ← ∅
5 while boxset 6= ∅ do
6 % Choice of a box to tighten according to
7 % an implementation-defined policy (FIFO, LIFO, . . .)
8 D ← extract box(boxset)
9 D ← prune(F, D)

10 % Is the box small enough to be considered a solution?
11 if w(D) 6 ε then
12 if D 6= ∅ then
13 sol ← sol ∪ {D}
14 endif
15 else
16 boxset ← boxset ∪ split(D)
17 endif
18 endwhile

end

Let UN be the elementary step performed by one unidimensional Newton ap-
plication to the projection f

(j)
i , where i and j may be different [23]. As soon as

D is moderately large, it is very likely that each projection constraint will have
many “solutions” that are not solutions of the original real system, and whose
discarding slows down the computation. The Newton method will also fail to
narrow down the domain of some xi if there is more than one solution to the
corresponding projection constraint for the current box D, thereby demanding
more splitting in BaP. Achieving the right balance between the amount of work
required by the prune method and the number of splitting performed overall
is the key to maximum efficiency of BaP. In this very situation, experimen-
tal evidences show that trying harder to narrow down the domain of xi pays
off [4]. A way to do it is to ensure that the canonical intervals [Ij , Ij

+] and

[Ij
−

, Ij], whose bounds are two consecutive floating-point-numbers, are solu-
tions of f

(j)
i (I1, . . . , Ij−1, xj , Ij+1, . . . , In) = 0. Algorithm bc3revise [4] en-

sures such a property (called box consistency of xj w.r.t. the constraint fi = 0
and D) for a projection f

(j)
i . A simple method to implement it combines

4

a dichotomic process with Newton-Raphson steps to isolate the leftmost and
rightmost solutions included in D of each projection constraint.

Example 2 Consider the constraint f(x) = (x − 1.5)(x − 2)(x − 3) = 0 and
the domain I = [1, 4] for x (See Fig. 1). The UN method leaves I unchanged
because the derivative of f over the initial domain contains 0 while bc3revise
narrows down I to I′ = [1.5, 3], which is the smallest interval included in I that
contains all the solutions to the interval constraint f(x) = 0.

Initial domain Domain after UN tightening

Domain after bc3revise tightening

f(x) = (x − 1.5)(x − 2)(x − 3)

Figure 1: Comparison of UN and bc3revise

Interval constraint methods [3] combine interval arithmetic—to reliably solve
a system of real equations without loss of solutions—and smart propagation
algorithms [19], to take advantage of its possible sparsity (some variables may
not occur in all constraints).

Algorithm bc3 [4] (see Algorithm 2) is such a method, which relies on the
pruning operator bc3revise to tighten domains. It is akin to a free-steering gener-
alized nonlinear Gauss-Seidel method with a twist [7]: as shown in Algorithm 2,
the set of projections on which bc3revise is applied contains all the possible
projections from the equation system, and not n of them only.

Algorithm bc3, or one of its variations, is often used as a basis to reliably
solve nonlinear constraint systems, though its use of the at most n2 projections
of a system of n equations on n variables makes it a bad choice for large dense
problems due to the overwhelming number of projections it then has to consider.
It is also sensitive to a problem that plagues other interval constraint algorithms,
whereby many calls of the contracting operators lead to no reduction of the
domains at all. Figure 2 shows this situation for bc3 on twelve standard test
problems to be presented in Section 4: calls to bc3revise are separated into
three categories (very effective calls leading to a reduction of domain size by
more than 10%, effective calls leading to a reduction of domain size by less
than 10%, and useless calls leading to no reduction at all). As we can see, the
majority of the work performed is essentially useless for almost all problems.

5

Algorithm 2 The bc3 algorithm
[bc3] in: at most n2 projections T = {(fi, xj) | i, j ∈ {1, . . . , n}}

in/out: box of domains D = I1 × · · · × In

begin
1 S ← T
2 while S 6= ∅ and D 6= ∅ do
3 (fi, xj) ← Choose a projection in S
4 D′ ← bc3revise(fi, xj , D)
5 if I′

j (Ij then % The domain of xj has been narrowed down
6 if I′

j 6= ∅ then
7 % We add to S all projections that rely on the domain of xj

8 S ← S ∪ {(fβ , xγ) ∈ T | xj occurs in fβ}
9 endif

10 D ← D′

11 endif
12 S ← S \ {(fi, xj)}
13 endwhile

end

calls to bc3revise

bb10000

bt24

cap

dbvf100

ecl12

ef200

mc200

te1.12

te3.8000

trig1.20

tro200

yam10

0 1000000 3000000 5000000 7000000

Very effective calls (>10%)
Effective calls (<10%)
Useless calls (0%)

Figure 2: Effectiveness of bc3

6

Since no fail-safe efficient strategy exists for choosing the right contracting
operator (line 3 of Algorithm 2) at the right time, the standard implementation
uses a queue to represent S (the contracting operators are applied in the order
they are inserted).

These inefficiencies may have two different non-exclusive causes: either some
of the at most n2 projections never lead to any reduction, and therefore only
clutter the propagation queue; or the effectiveness of projections varies widely
during the solving process and may oscillate from nothing to good.

In the first case, optimizing bc3 boils down to statically identifying the best
projections and using only these ones; in the second case, we have to keep all n2

projections and find a means to consider at any time during the solving process
only those projections with good tightening potential.

f1

f2

f3

f4

f5

f6

x1 x2 x3 x4 x5 x6

Figure 3: History of narrowing effectiveness per projection for Moré-Cosnard-6 ;
in ordinate, the efficiency in domain reduction percentage; in abscissa, calls to
the corresponding projection.

As the following examples show, it appears that, depending on the problem
considered, both situations may arise. Consider the Moré-Cosnard problem [21]
of dimension 6: Figure 3 shows the history of effectiveness (in ordinate, percent-
age of reduction obtained in the range [0, 1]) of each projection when solving

7

it with bc3 (abscissa goes from the first use of (fi, xj) to its last use2). One
may easily see that the only useful projections are the ones on the diagonal. As
a side note, we may also remark that some projection (e.g., (f1, x2), (f2, x3),
. . .) perform well the first time they are used, and then consistently badly af-
terwards. This does not bode well for identifying statically which are the best
projections to retain.

On the other hand, consider the sparse problem Trigexp1 [18] for n = 6:
The history of effectiveness given in Figure 4 shows that there are more than
n useful projections (for example, (f5, x4) and (f4, x3) should probably both be
retained). Furthermore the effectiveness of each projection varies widely during
the solving process, and some projections that are not very good in the beginning
become good or average afterwards (e.g., (f5, x4)), while some projections that
are very good in the beginning become quite bad after some time (e.g., (f2, x2)).

f1

f2

f3

f4

f5

f6

x1 x2 x3 x4 x5 x6

Figure 4: History of narrowing effectiveness per projection for Trigexp1 (n = 6)

These examples should convince us that we have to keep all projections
for consideration in bc3, and that we must resort to some dynamic selection

2Note that, for Moré-Cosnard as well as for the next example Trigexp1, each projection is
used almost as many times as the others in an implementation of bc3 in which S is managed
as a queue.

8

scheme to apply bc3revise only on those projections that offer the best narrowing
potential at some point in the solving process.

3 Speeding-up solving through Reinforcement
Learning

Reinforcement learning [26] is a sub-area of machine learning considering un-
supervised agents that iteratively refine their strategy for choosing actions in
an uncertain environment so as to maximize a long-term reward. Agents re-
fine their knowledge of the environment by observing the effect of the most
recently chosen actions. Hence, they have to achieve the optimal trade-off be-
tween exploration—testing the different actions at hand—and exploitation—
performing the actions that have the greatest potential reward. The problem is
compounded in an ever-evolving environment, that is when the probability of a
reward for an action may vary.

A standard problem considered in reinforcement learning is the multi-armed
bandit problem [26]: given k slot machines with payoff probabilities unknown to
the player and some time horizon, find the sequence of levers to pull in order
to maximize the gains. In this problem, the action chosen is represented by
the number associated with the lever to pull, the reward is the gain obtained
by pulling the lever chosen, and the long-term objective is to maximize the
cumulated rewards at the time horizon. The non stationary variant of the
problem involves slot machines with varying payoff probabilities [1, 2].

A close look at our problem allows us to draw an analogy between the se-
lection process of projections in bc3 and the non stationary multi-armed bandit
problem: in our context, the k levers are the at most n2 projections, and their
payoff is the relative domain reduction3 their use in bc3revise leads to. We
use the relative domain reduction instead of the absolute one as a measure of
efficiency in order not to favor too much the projections used early when the
domains of variables are large to the detriment of projections applied on smaller
domains.

No time horizon is given in bc3. However, by maximizing the sum of relative
domain reductions, we expect both to avoid applying bc3revise on projections
that do not lead to any reduction, and to reduce the overall number of calls to
bc3revise, thereby accelerating the computation of solutions4.

3.1 Adaptation of reinforcement learning to bc3

A difficulty of the adaptation of the reinforcement learning approach to our
problem of selecting the best projections is that, especially in big or dense prob-

3The relative reduction is defined by (w(Ib
j)−w(Ia

j))/w(Ib
j) where w(Ib

j) (resp. w(Ia
j)) is

the width of the domain of xj before (resp. after) applying bc3revise on (fi, xj).
4Once again, in interval constraint programming, a solution is a Cartesian product of

domains whose largest width is smaller than a predefined threshold, and for which it is not
possible to prove that it does not contain any point satisfying the system.

9

lems, the number of projections among which to choose is so large that a lot of
time can be spent exploring alternatives. Consequently, we have retained the
recency-weighted average (rwa) [26, Chap. 2, Sect. 6] as a reasonable reinforce-
ment learning method for our purpose, it being more exploitation-oriented than
most other methods.

Algorithm 3 Box Consistency with Reinforcement Learning (bcrl)
[bcrl] in: T = {(fi, xj , W

(ij)) | i, j ∈ {1, . . . , n}}
in/out: box of domains D = I1 × · · · × In

begin
1 forall j ∈ {1, . . . , n} do

2 Qj ← {(fi, xj , W
(ij)) ∈ T | i ∈ {1, . . . , n}}

3 done
4 % Looping on the projections in all queues
5 while D 6= ∅ and ∃j ∈ {1, . . . , n} s.t. Qj 6= ∅ do
6 % Adding the n heaviest projections from different Qjs into queue S
7 S ← ⋃n

j=1{pop(Qj)}
8 forall (fi, xj , W

(ij)) ∈ S do % Considering at most n heaviest projections
9 D′ ← bc3revise(fi, xj , D)

10 r(ij) ← (w(Ij)− w(I′
j))/w(Ij) % Computing the relative reduction

11 W (ij) ← W (ij) + α
(
r(ij) −W (ij)

)
12 if I′

j (Ij then
13 if I′

j 6= ∅ then
14 forall k ∈ {1, . . . , n} do
15 % Adding projections to reconsider in respective queues

16 Qk ← Qk ∪ {(fβ , xk, W (βk)) ∈ T | xj occurs in fβ , β ∈ {1, . . . , n}}
17 done
18 endif
19 D ← D′

20 endif
21 done
22 endwhile

end

Algorithm rwa is a standard method to solve non stationary reinforcement
learning problems. It associates to each possible action a weight that measures
its interest. This weight is a weighted average of all past rewards, hence the
name. At each iteration, the action with the highest weight is chosen, its re-
ward observed, and its weight updated accordingly. This method adopts a pure
exploitation strategy since alternative choices are never explored.

In our context, using rwa means associating a weight W (ij) with each projec-
tion (fi, xj); the set S in bc3 (see Algorithm 2) is replaced by a priority queue
(heaviest weights available first). Line 3 is then replaced by the extraction of
the projection with heaviest weight. Let r(ij) be the relative reduction obtained
on Line 4. The weight W

(ij)
k+1 that takes into account the k past payoffs and the

10

most recent one r
(ij)
k+1 is obtained with the formula:

W
(ij)
k+1 = W

(ij)
k + α

(
r
(ij)
k+1 −W

(ij)
k

)
(4)

where α is a constant parameter between 0 and 1 that monitors the importance
granted to the past payoffs w.r.t. the current one.

Using one priority queue S for all the projections, as done in bc3, is a sub-
optimal strategy here in that it may create propagation cycles leading to overall
slow convergence phenomena [17]. As an illustration, consider two projections
p1 and p2 such that when p1 is applied, p2 is inserted in S and conversely. It
could well be the case that p1 and p2 are applied cyclically with enough success
so that the other projections are not considered. Such a phenomenon is in gen-
eral counterproductive in the long term: even though p1 and p2 produce good
relative reductions, they do not reduce the domains of all the variables and do
not consider all the constraints.

To avoid this, we use one priority queue Qj per variable xj ; when it needs
to be reconsidered, the projection (fi, xj) is always pushed in Qj . The resulting
algorithm bcrl is presented in Algorithm 3. Algorithm bcrl contains an inner
loop over at most n projections on n different variables (less than n projections
if some queues are temporarily empty) in addition to the while loop to reach a
fixed-point, which was already present in bc3.

Note: In order to rigorously validate our results and to assess the impact of
the various choices we made, we have tested using one propagation queue per
variable with bc3 as well. For all the problems considered here, the computa-
tional time required is essentially similar to the one required by bc3 with one
propagation queue only (see Figure 5).

3.2 Setting up bcrl

In order to obtain a fully defined algorithm for bcrl, we need to set two interde-
pendent parameters: the value of α and the value of the initial weights.

According to Eq. (4), W (ij) is a weighted average of the past payoffs and of
the initial weight W

(ij)
0 :

W
(ij)
k = (1− α)kW

(ij)
0 +

k∑

l=1

α(1− α)(k−l)r
(ij)
l (5)

Consequently, for a small α (e.g., α = 0.1), the weight α(1 − α)(k−l) of the
payoffs will decrease only slightly with their age, with the exception of the initial
“payoff”, whose weight remains important. By contrast, with a large α (e.g.,
α = 0.9), the weights of the payoffs decrease fast with their age, with the most
recent payoff being much favored.

With a large α, a projection may see its weight plunge the first time it
performs badly, while the aftermath of such an event would be dampened with

11

bc3 with n queues
bc3 with 1 queue

Time in seconds

0

10
0

20
0

30
0

40
0

bb1000

bt24

cap

dbvf100

ecl12

ef200

mc200

te1.12

te3.8000

trig1.20

tro200

yam10

Figure 5: Comparing bc3 with only one queue and with one queue per variable

12

Table 1: Incidence of α on computation times for bcrl-1
Problem / α 0.1 0.3 0.5 0.7 0.9
bb10000 93 68 63 56 49
bt24 132 130 152 139 117
cap 132 124 125 117 115
dbvf100 44 44 44 44 44
ecl12 291 285 284 281 283
ef200 8 8 8 8 9
mc200 674 749 920 1195 1331
te1.12 25 26 26 28 26
te3.8000 1 1 1 1 1
trig1.20 82 82 83 85 82
tro200 45 46 45 45 45
yam10 46 47 47 47 47
Times in seconds on an Intel Pentium IV at 3.8 GHz (rounded to the nearest sec.)
Boldfaced time: best time for a benchmark

a small α by the cumulative effect of its past history. On the other hand, the
use of a small α requires extra care when initializing the weights W0. In any
case, a consequence of the weight update formula (5) is that the initial weight
W0 may be an important bias of the rwa method.

Without further information, we first decide to initialize all weights to 1,
giving equal importance to all projections. Table 1 shows the impact of α on
computation time for these initial weights (Algorithm bcrl-1). Both 0.1 and 0.9
seem good contenders for the choice as default values.

Figure 6 presents a comparison of the number of effective and useless calls
for bc3 and bcrl-1 for standard test problems to be described in Section 4. For
all problems, the lowest bar corresponds to bc3 while the topmosts correspond,
from bottom to top, to bcrl-1 for α = 0.1 and α = 0.9.

Overall, bcrl-1 reduces the total number of calls to bc3revise (and therefore,
the solving time—see Figure 8, page 18) for most problems. On closer look, it
appears that bcrl-1 requires more calls than bc3 on problem mc200 , though the
number of effective calls is also increased. For this dense problem, the number
of projections is large (2002), and bcrl-1 requires a long time to discover that
it possesses a static transversal (see Page 8) because all projections have the
same weight initially, and are then all considered in turn at least once at the
beginning. This effect is worsened with α = 0.9 by a perverse side-effect of it
selecting effective projections more often than with α = 0.1: out of 602199 calls
to bc3revise, 122002 (20.25%) lead to some insubstantial reduction (less than
10%); by contrast, using α = 0.1 yields 571999 calls to bc3revise (only 5 % less
than with α = 0.9), out of which only 24033 (4 %) lead to some reduction less
than 10 %. Each successful call to bc3revise leads to testing whether to include
in the propagation queues the projections that depend on the variable reduced

13

#calls to bc3revise

0e+00 2e+06 4e+06 6e+06 8e+06

bb1000

bt24

cap

dbvf100

ecl12

ef200

mc200

te1.12

te3.8000

trig1.20

tro200

yam10

bc3
bcrl−1 (alpha=0.1)

bcrl−1 (alpha=0.9)

0e+00 2e+06 4e+06 6e+06 8e+060e+00 2e+06 4e+06 6e+06 8e+06

Very effective calls (>10%)
Effective calls (<10%)
Useless calls (0%)

Figure 6: Effectiveness of bcrl-1 (α = 0.1 and α = 0.9) vs. bc3

14

Table 2: Incidence of α on computation times for bcrl-j

Problem / α 0.1 0.3 0.5 0.7 0.9
bb10000 34 34 34 36 47
bt24 155 147 158 144 121
cap 131 126 119 116 115
dbvf100 44 44 43 43 44
ecl12 278 270 275 269 268
ef200 8 8 8 8 9
mc200 39 39 39 39 39
te1.12 25 25 26 26 26
te3.8000 6 5 5 5 5
trig1.20 88 85 86 87 86
tro200 45 45 45 45 45
yam10 46 46 46 46 47
Times in seconds on an Intel Pentium IV at 3.8 GHz (rounded to the nearest sec.)
Boldfaced time: best time for a benchmark

(see Line 16 in Algorithm bcrl, Page 10). For a large dense problem such as
mc200, this process takes a lot of time because there are 2002 − 1 projections
to consider each time. A solution to this problem is to introduce a so-called
improvement factor γ and to forbid propagation (that is, to bypass Line 17 in
bcrl) whenever the reduction achieved by a call to bc3revise is smaller than γ %.
When using an improvement factor of 10 %, bcrl-1 with α = 0.9 becomes twice
as fast as with α = 0.1 on mc200. In addition, setting mc200 aside, the choice
of α = 0.9 leads to better performances overall than α = 0.1.

As a consequence, we decide to favor the reactivity offered by α = 0.9, and
we choose it as the default value in the rest of this paper.

3.3 Enhancing bcrl with an initial guess

In order to achieve good performances even for large dense problems with static
transversals, we have to use some information at the beginning of the solving
process to preset the weights to favor some projections over others. If our
initialization heuristic is good, we expect that the best projections will be used
more often than the others from the very start.

The heuristic chosen works as follows: we compute the interval Jacobian J
of the system for the initial box and set W (ij) to the sum of the mignitude5 of
J ij normalized to the range [0, 0.5] and of the magnitude6 of J ij normalized to
the range [0, 0.5]. The weight thus lies in the range [0, 1].

Intuitively, the interval Jacobian indicates the steepness of the projections,
i.e. which projections are more likely to allow reducing the domain of their

5mig I = min{|a| | a ∈ I}
6mag I = max{|a| | a ∈ I}

15

#calls to bc3revise

0e+00 2e+06 4e+06 6e+06 8e+06

bb1000

bt24

cap

dbvf100

ecl12

ef200

mc200

te1.12

te3.8000

trig1.20

tro200

yam10

bc3
bcrl−1 (alpha=0.9)

bcrl−j (alpha=0.1)
bcrl−j (alpha=0.9)

0e+00 2e+06 4e+06 6e+06 8e+060e+00 2e+06 4e+06 6e+06 8e+06

Very effective calls (>10%)
Effective calls (<10%)
Useless calls (0%)

Figure 7: Effectiveness of bc3 vs. bcrl-j (α = 0.1 and α = 0.9)

16

associated variable. The mignitude of an entry in the Jacobian gives a worst-case
information on the steepness while the magnitude gives a best-case information.
The heuristic chosen mixes both equally.

In the following, times reported always take into account the time spent in
computing the initial weights.

The resulting instance of bcrl is called bcrl-j. Table 2 presents the incidence of
α for bcrl-j. Note how bcrl-j seems less sensitive to the value of the parameter α
than bcrl-1. Indeed, since rwa follows a pure exploitation strategy, enhancing it
with a good initial guess yields a more focused exploitation. Since the heuristic
is good on our test set, the influence of α is dampened. However, we think
it is a better choice to keep α = 0.9 as the default value for bcrl-j in case the
heuristic would fail on some problem, or when the problem does not have a clear
transversal.

Figure 7 graphically compares the number of calls to bc3revise required to
solve our set of test problems. The lowest bar corresponds to bc3, the mid-
dle bar to bcrl-1, and the topmost bars to bcrl-j. As expected, bcrl-j performs
consistently better than bc3 and bcrl-1. For Problem mc200, it achieves such a
speed-up that it is not even visible on the chart. The reason is that the heuris-
tic clearly identifies the transversal in this problem and initializes the weights
accordingly, allowing bcrl-j to purely exploit this transversal. For problems
without a clear transversal (e.g. ef200), the heuristic does not hinder proper
learning.

4 Evaluating bcrl

In order to assess the quality of our new algorithms, we have selected a set
of twelve standard nonlinear problems [14] of various sizes, various characteris-
tics (quadratic constraints, polynomial constraints, non-polynomial constraints
involving sines, cosines, logarithms and exponentials), and various sparsities
(dense problems, in which all variables occur in all equations, and sparse prob-
lems, with only a small subset of the variables in each equation). The char-
acteristics for all these problems are synthesized in Table 3. The Size column
indicates the number n of variables and equations (all the problems are square);
the Sparsity column gives the sparsity index defined as the number p of possible
projections divided by n2 (p is equal to n2 for dense problems such as mc200
but may be much smaller for sparse problems). The initial domains for all test
problems are those given on the COPRIN web page [14].

Figure 8 presents the computation times for the three algorithms considered.
All the experiments were conducted on an Intel Pentium IV at 3.8 GHz with
2GB of RAM and a Standard Unit Time equal to 50.4 s (this is defined as the
time required for performing 108 evaluations of the function Shekel 5 [5]). The
constraint solving environment used is a C++ library written from scratch by
the authors. The times reported correspond to the enclosing of all the solutions
in boxes of domains whose largest dimension is smaller than 10−8.

As noted previously, bc3 performs poorly on dense problems (e.g., mc200)

17

bcrl−j (alpha=0.9)
bcrl−1 (alpha=0.9)
bc3

Time in seconds

0 200 400 600 800 1000 1200

bb1000

bt24

cap

dbvf100

ecl12

ef200

mc200

te1.12

te3.8000

trig1.20

tro200

yam10

82
56

47

139
139

121

306
117
115

89
44
44

214
281

268

8
8
9

436
1195

39

27
28
26

3
1
5

182
85
86

79
45
45

208
47
47

Figure 8: Solving test problems with and without learning (times rounded to
the nearest second)

18

Table 3: Test problems

Name Code Size Sparsity Constraints

Broyden-banded bb10000 10 000 0.07% quadratic
Broyden tridiagonal bt24 24 10.95% quadratic
Caprasse cap 4 100.00% polynomial
Discrete Boundary Value Fun. dbvf100 100 2.93% polynomial
Extended Crag-Levy ecl12 12 14.58% non-polynomial
Extended Freudenstein ef200 200 1.00% polynomial
Moré-Cosnard mc200 200 100.00% polynomial
Trigexp 1 te1.12 12 23.61% non-polynomial
Trigexp 3 te3.8000 8 000 0.04% non-polynomial
Trigo1 trig1.20 20 100.00% non-polynomial
Troesch tro200 200 1.49% non-polynomial
Yamamura yam10 10 100.00% polynomial

due to the sheer number of projections to consider. The results for bcrl-1 are
consistent with the observation made on Figure 6: the method is often better
than bc3 though it can perform poorly on dense problems with a clear static
transversal (e.g., mc200), spending too much time in exploration. Though not
always the fastest method, bcrl-j appears the most regular in its results since it
always solves the problems in a time that is close to that of the best method.

5 Related works

As said previously, there are already well established results for optimizing the
resolution of systems of linear real equations with first-order methods that re-
quire strict diagonal dominance of the coefficient matrix [23, 6].

The literature dealing with nonlinear systems often revolves around methods
that linearize them in order to exploit the results on linear systems: many pa-
pers consider an interval Newton-Gauss-Seidel method (aka Hansen-Sengupta’s
method [10]) that solves the linear system obtained from the local first-order
expansion of nonlinear terms obtained with Newton’s method by a precondi-
tioned Gauss-Seidel method [15]. Accordingly, a lot of work is then devoted to
finding the best preconditioners [16].

Sotiropoulos (sot) et al. [25] have an original approach in this respect: they
select a transversal for a polynomial system at the beginning of the computation
by looking at the syntactic structure of the equations (variables with the largest
degree in the system, for example), and by using numerical considerations only
to break ties. In their paper, the static transversal thus obtained is then used
in an interval Newton-Gauss-Seidel algorithm.

Another approach uses a Gauss-Seidel-Newton method as presented in the
introduction: Herbort and Ratz [11] (hr) compute the Jacobian J of the equation
system w.r.t. the initial box D, and they select projections according to whether

19

Table 4: Comparing related work with solving by learning

Problem hr gh sot bcrl-j
(α = 0.9)

bb10000 1760 TO TO 47
bt24 228 TO 198 121
cap TO 237 112 115
dbvf100 41 TO 35 44
ecl12 2266 677 NA 268
ef200 TO 329 TO 9
mc200 3 860 TO 39
te1.12 TO 155 NA 26
te3.8000 1 71 NA 5
trig1.20 116 303 NA 86
tro200 48 TO NA 45
yam10 48 3133 38 47
Times in seconds on an Intel Pentium IV at 3.8 GHz (rounded to the nearest sec.)
TO: Time out (7200s) reached
NA: Not applicable (problem with non-polynomial expressions)

the corresponding entry in the Jacobian straddles zero or not. Their method is
not completely static since they recompute the Jacobian after each outer step
of Gauss-Seidel. In addition, it theoretically allows for the choice of more than
n projections.

In settings more similar to ours, Granvilliers and Hains [9] (gh) try to op-
timize bc3 by applying bc3revise on all projections at the beginning, and by
selecting only the ones that tightened variables’ domains the most. The choice
of the projections retained is reconsidered whenever some splitting occurs in Al-
gorithm BaP. For problems that lead to a lot of splitting, the method becomes
computationally expensive.

Table 4 compares these three methods with bcrl-j. Note that these results
should be taken with great care since we used our own implementation of these
methods in the same environment as for bcrl-j, and that our only sources of
information are the papers in which they were originally presented. With that
proviso in mind, we see that bcrl-j outperforms hr and gh most of the times. With
the exception of problem bb10000 where it takes more than 150 times longer
than bcrl-j, the method sot is quite good on the benchmarks it can handle, that
is those with strictly polynomial expressions, which should lead us to investigate
how to harness the power of its heuristics in our settings. Performance of hr is
stunning on mc200. We suspect that it is because this problem has only one
solution that can be obtained without any splitting.

Lastly, in a somewhat orthogonal approach, Lebbah and Lhomme [17] try to
identify cycles in the propagation inside bc3 to avoid slow convergence phenom-
ena. One direction for future research might indeed be to try taking advantage

20

of their methods in bcrl.

6 Conclusion

Reinforcement learning shows all its potential for difficult problems where no
static transversal exists since it realizes a good tradeoff between considering all
projections equally (bc3) and gambling on n projections only (standard first-
order methods). The additional cost incurred by the weights update appears
negligible, though the same might not hold for their smart initialization. Experi-
mental evidences tend to show that the approach taken with bcrl-j, sophisticated
as it is, still incurs a very reasonable overhead in view of its benefits.

Despite its simplicity, the rwa method as we embedded it in bc3 leads to a
robust solving algorithm with reliable performances for all kinds of test prob-
lems.

There is still room for improvements nonetheless: as is shown on Fig. 7,
despite the amelioration obtained with bcrl-j w.r.t. bc3, there still are problems
for which many calls to bc3revise do not lead to any domain reduction (most
notably, bt24 and ef200). These problems also require a lot of splitting; this
may be because bc3revise is itself not a powerful enough algorithm to tighten the
domains for these instances (it may be the case when the numerical expressions
involved are ill-conditioned).

We have used reinforcement learning to dynamically select the best pro-
jections to consider with bc3revise. There is, however, more potential to our
method. In particular, we could reuse the principle at the root of bcrl to select
both the projection and the pruning method to use with. We would no longer
assign weights to projections only, but to pairs of narrowing operators (projec-
tion/pruning method). This would lead to consider more than n2 operators by
creating pairs between the at most n2 projections and several pruning meth-
ods, such as bc3revise, a unary Newton-Raphson contractor, or other methods,
letting the learning procedure dynamically sift the best narrowing operators.

References

[1] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire.
The non-stochastic multi-armed bandit problem. SIAM Journal on Com-
puting, 32(1):48–77, 2002.

[2] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Shapire.
Gambling in a rigged casino: the adversarial multi-armed bandit problem.
In Procs. of the 36th Annual Symposium on Foundations of Computer Sci-
ence (FOCS ’95), pages 322–331. IEEE Computer Society Press, 1995.

[3] Frédéric Benhamou. Interval constraints, interval propagation. In Panos M.
Pardalos and C. A. Floudas, editors, Encyclopedia of Optimization, vol-
ume 3, pages 45–48. Kluwer Academic Publishers, 2001.

21

[4] Frédéric Benhamou, David McAllester, and Pascal Van Hentenryck.
CLP(Intervals) revisited. In Procs. Intl. Symp. on Logic Prog., pages 124–
138. The MIT Press, 1994.

[5] L. C. W. Dixon and G. P. Szegö. The global optimization problem: an
introduction. In L. C. W. Dixon and G. P. Szegö, editors, Towards Global
Optimization 2, pages 1–15. North-Holland, 1978.

[6] Iain S. Duff. On algorithms for obtaining a maximum transversal. ACM
Transactions on Mathematical Software, 7(3):315–330, September 1981.

[7] Frédéric Goualard. On considering an interval constraint solving algorithm
as a free-steering nonlinear gauss-seidel procedure. In Procs. of the 20th
Annual ACM Symposium on Applied Computing (Reliable Computation
and Applications track), volume 2, pages 1434–1438. The Association for
Computing Machinery, Inc., March 2005.

[8] Frédéric Goualard and Christophe Jermann. On the selection of a transver-
sal to solve nonlinear systems with interval arithmetic. In Vassil N. Alexan-
drov et als., editor, Procs. International Conference on Computational Sci-
ence 2006, volume 3991 of Lecture Notes in Computer Science, pages 332–
339. Springer-Verlag, 2006.

[9] Laurent Granvilliers and Gaétan Hains. A conservative scheme for parallel
interval narrowing. Information Processing Letters, 74:141–146, 2000.

[10] Eldon R. Hansen and Saumyendra Sengupta. Bounding solutions of systems
of equations using interval analysis. BIT, 21:203–211, 1981.

[11] Stefan Herbort and Dietmar Ratz. Improving the efficiency of a nonlinear-
system-solver using a componentwise newton method. Research report
2/1997, Institut für Angewandte Mathematik, Universität Karslruhe (TH),
1997.

[12] Timothy J. Hickey, Qun Ju, and Maarten H. Van Emden. Interval arith-
metic: from principles to implementation. J. ACM, 48(5):1038–1068,
September 2001.

[13] IEEE. IEEE standard for binary floating-point arithmetic. Technical Re-
port IEEE Std 754-1985, Institute of Electrical and Electronics Engineers,
1985. Reaffirmed 1990.

[14] INRIA project COPRIN: Contraintes, OPtimisation, Résolution par
INtervalles. The COPRIN examples page. Web page at
http://www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/
benches.html.

[15] Ralph Baker Kearfott, Chenyi Hu, and Manuel Novoa III. A review of pre-
conditioners for the interval Gauss-Seidel method. Interval Computations,
1:59–85, 1991.

22

[16] Ralph Baker Kearfott and Xiaofa Shi. Optimal preconditioners for inter-
val gauss-seidel methods. In G. Alefeld and A. Frommer, editors, Scien-
tific Computing and Validated Numerics, pages 173–178. Akademie Verlag,
1996.

[17] Yahia Lebbah and Olivier Lhomme. Accelerating filtering techniques for
numeric csps. Artificial Intelligence, 139(1):109–132, 2002.

[18] Ladislav Luksan and Jan Vlcek. Sparse and partially separable test prob-
lems for unconstrained and equality constrained optimization. Research
report V767-98, Institute of Computer Science, Academy of Science of the
Czech Republic, December 1998.

[19] Alan K. Mackworth. Consistency in networks of relations. Artificial Intel-
ligence, 1(8):99–118, 1977.

[20] Ramon E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, N.
J., 1966.

[21] Jorge J. Moré and Michel Yves Cosnard. Numerical solutions of nonlinear
equations. ACM Transactions on Mathematical Software, 5:64–85, 1979.

[22] Arnold Neumaier. Interval methods for systems of equations, volume 37 of
Encyclopedia of Mathematics and its Applications. Cambridge University
Press, 1990.

[23] James M. Ortega and Werner C. Rheinboldt. Iterative solutions of nonlin-
ear equations in several variables. Academic Press Inc., 1970.

[24] Helmut Ratschek and Jon Rokne. Interval methods. In Handbook of Global
Optimization, pages 751–828. Kluwer Academic, 1995.

[25] D. G. Sotiropoulos, J. A. Nikas, and T. N. Grapsa. Improving the efficiency
of a polynomial system solver via a reordering technique. In Procs. 4th
GRACM Congress on Computational Mechanics, volume III, pages 970–
976, 2002.

[26] Richard Sutton and Andrew Barto. Reinforcement learning: an introduc-
tion. MIT Press, 1998.

23

