Untyping Typed Algebraic Structures and Colouring Proof Nets of Cyclic Linear Logic - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2010

Untyping Typed Algebraic Structures and Colouring Proof Nets of Cyclic Linear Logic

Résumé

Algebraic structures sometimes need to be typed. For example, matrices over real numbers form a ring, but multiplication is a only a partial operation: dimensions have to agree. Therefore, a natural way to look at the ring of matrices algebraically is to consider ``typed rings''. We prove several ``untyping'' theorems: in some algebras (semirings, Kleene algebras, residuated lattices, involutive residuated lattices), typed equations can be derived from the underlying untyped equations. As a consequence, the corresponding untyped decision procedures can be extended for free to the typed settings. Some of these theorems are obtained via a detour through fragments of cyclic linear logic.
Fichier principal
Vignette du fichier
RR-7176.pdf (337.17 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00421158 , version 1 (30-09-2009)
hal-00421158 , version 2 (18-01-2010)
hal-00421158 , version 3 (07-04-2010)
hal-00421158 , version 4 (14-06-2010)

Identifiants

  • HAL Id : hal-00421158 , version 2

Citer

Damien Pous. Untyping Typed Algebraic Structures and Colouring Proof Nets of Cyclic Linear Logic. 2010. ⟨hal-00421158v2⟩
433 Consultations
306 Téléchargements

Partager

More