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Détyper des structures algébrique typées
et colorier la logique linéaire cyclique

Résumé : Les structures algébriques doivent parfois être typées. Par exemple, les matrices sur des nombres réels forment un
anneau, mais la multiplication est seulement une opération partielle: les dimensions doivent concorder. Une façon naturelle de
considérer les matrices de façon algébrique consiste à travailler avec des “anneaux typés”. Nous prouvons plusieurs théorèmes
de “détypage”: dans certaines algèbres (semi-anneaux, algèbres de Kleene, treillis résidués, treillis résidués involutifs), les
équations typées peuvent être dérivées à partir des équations non typées sous-jacentes. Les procédures de décision non typées
correspondantes peuvent ainsi être étendues directement aux structures typées. Certains de ces théorèmes sont obtenus par
un détour à propos de fragments de la logique linéaire cyclique.

Mots-clés : treillis résidués, logique linéaire cyclique, algèbres de Kleene, procédures de décision, calcul de séquents,
algèbres typées, algèbres partielles.
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lgebraic structures sometimes need to be typed. For ex-
ample, matrices over real numbers form a ring, but multi-
plication is a only a partial operation: dimensions have to
agree. Therefore, a natural way to look at the ring of ma-
trices algebraically is to consider “typed rings”. We prove
several “untyping” theorems: in some algebras (semirings,
Kleene algebras, residuated lattices, involutive residuated
lattices), typed equations can be derived from the underly-
ing untyped equations. As a consequence, the correspond-
ing untyped decision procedures can be extended for free to
the typed settings. Some of these theorems are obtained via
a detour through fragments of cyclic linear logic.

1 Introduction

Motivations. Algebra can be quite useful to design deci-
sion procedures in interactive theorem provers. For exam-
ple, the ring tactic [10] of the Coq proof assistant allows
one to automatically prove equations like

x · (y + f(y)) · z = x · y · z + x · f(y) · z (1)

provided that operations · and + have been declared to form
a semiring. The underlying mechanism consists in mov-
ing to the initial (syntactic) model of semirings, proving
the equality in that particular model, and using the initiality
property to come back to the concrete model.

A limitation of this approach is that it does not directly
scales to “typed” structures like matrices or heterogeneous
binary relations. Considering equation (1), it might be the
case that x, y, f(y), z are rectangular matrices whose di-
mensions make the equation meaningful, or binary relations
whose domain and co-domain agree. The equation holds in
both cases: although they are partial operations, matrix mul-
tiplication and addition (or relation composition and union)
satisfy semiring laws. Therefore, we should be able to ex-
tend the above mechanism to decide such equations.
†Work partially funded by the French ANR projet blanc “Curry-

Howard pour la Concurrence” CHOCO ANR-07-BLAN-0324

A possibility would be to consider “typed initial mod-
els”, and to extend standard decision procedures to work
on these annotated syntactic models. However, while this
seems fairly feasible for simple theories like rings, it hap-
pens to be untractable for more complex decision proce-
dures (e.g., deciding the equational theory of Kleene alge-
bras requires one to implement and prove a lot of finite au-
tomata algorithms; one does not want to introduce a new
layer of complexity by keeping track of type annotations).

We propose another approach, which is depicted below:
we prove “untyping” theorems that allow one to erase type
informations, prove the equation using standard, untyped,
decision procedures, and then derive a typed proof from the
untyped one.

untyped setting: â
decide

b̂

rebuild types

��typed setting:

erase types

OO

a ? b

An important motivation behind this work actually comes
from our Coq library ATBR [2], whose aim is to provide
algebraic tools for working with binary relations. In par-
ticular, we developed efficient tactics for proving theorems
of the underlying decidable partial axiomatisations (among
which, semirings, residuated lattices, and Kleene algebras).
The ideas presented in this paper were proved and inte-
grated in this library, so as to extend our tactics to heteroge-
neous structures, for free.

Overview. We shall mainly focus on two algebraic struc-
tures, which raise different problems and illustrate several
aspects of these untyping theorems: Kleene algebras [14]
and residuated lattices [13].

The case of Kleene algebras is the simplest; the main
difficulty comes from the annihilating element (0), whose
really lose typing rule requires us to show that equational
proofs in semirings can be factorised so as to use the anni-
hilation laws at first, and then reason using the other axioms.
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4 Damien Pous 1

The case of residuated structures is more involved: due
to the particular form of axioms about residuals, we can-
not rely on standard equational axiomatisations of these
structures. Instead, we need to exploit an equivalent cut-
free sequent proof system (first proposed by Ono and Ko-
mori [20]), and to notice that this proof system corresponds
to the intuitionistic fragment of cyclic linear logic [26]. The
latter logic is much more concise and the corresponding
proof nets are easier to reason about, so that we can ob-
tain the untyping theorem in this setting, and port it back to
residuated lattices by standard means.

The above sequent proof systems have the sub-formula
property, so that they yield decision procedures, using a
simple proof search algorithm. As an unexpected applica-
tion, we show that the untyping theorem makes it possible
to improve these algorithms by reducing the set of proofs
that have to be explored.

Outline. We introduce our notations and make our notion
of typed structure precise in Section 2. We study the cases
of Kleene algebras and residuated lattices in Sections 3
and 4, respectively. We conclude with applications, related
work, and directions for future work in Section 5.

2 Notations, typed structures

All our arguments being proof-theoretic, we shall work with
syntactic models, by implicitly relying on initiality argu-
ments to reach other models. Since we are mainly interested
in structures equipped with a composition operation (rela-
tional composition or matrix multiplication), our “types”
basically record the domain and co-domain informations:
using category theory terminology, they delimit homsets.

Let X be an arbitrary set of variables, ranged over using
letters x, y. Given a signature Σ, we let a, b, c range over
the set T (Σ +X ) of terms with variables. Given a set T of
objects (ranged over using letters n,m, p, q), a type is a pair
(n,m) of objects (which we denote by n → m, following
categorical notations), a type environment Γ : X → T 2 is
a function from variables to types, and we will define type
judgements of the form Γ ` a : n → m, to be read “in
environment Γ, term a has type n → m, or, equivalently, a
is a morphism from n to m”. By Γ ` a, b : n → m, we
mean that both a and b have type n→ m; type judgements
will include the following rule for variables:

Γ(x) = (n,m)
Γ ` x : n→ m

TV

Similarly, we will define typed equalities using judgements
of the form Γ ` a = b : n → m: “in environment Γ, terms
a and b are equal, at type n → m”. Equality judgements

will generally include the following rules, so as to obtain an
equivalence relation at each type:

Γ(x) = (n,m)
Γ ` x = x : n→ m

V

Γ ` a = b : n→ m
Γ ` b = c : n→ m

Γ ` a = c : n→ m
T

Γ ` a = b : n→ m

Γ ` b = a : n→ m
S

Informally, a model is a multigraph with T as set of vertices,
equipped with a set of operations on edges corresponding to
the signature and satisfying both the typing and the equality
inference rules.

By taking the singleton set as set of objects (T = {∅}),
we recover standard, untyped structures: the only typing
environment is ∅̂ : x 7→ (∅, ∅), and types become unin-
formative (this corresponds to working in a one-object cat-
egory; all operations are total functions). To alleviate no-
tations, since the typing environment will always be either
∅̂ or a an abstract constant value Γ, we shall leave it im-
plicit in type and equality judgements, by relying on the
absence or presence of types to indicate which one to use.
For example, we shall write ` a = b : n → m for
Γ ` a = b : n → m, while ` a = b will denote the
judgement ∅̂ ` a = b : ∅ → ∅.

The question we study in this paper is the following one:
given a signature and a set of inference rules defining a type
judgement and an equality judgement, does the implication
below holds, for all a, b, n,m such that ` a, b : n→ m?

` a = b entails ` a = b : n→ m .

In other words, in order to prove an equality in a typed
model, is it safe to remove all type annotations, so as to
work in the untyped underlying free structure?

3 Kleene algebras

We study the case of residuated lattices in Section 4; here
we focus on Kleene algebras. In order to illustrate our
methodology, we actually give the proof in three steps, by
considering two intermediate algebraic structures: monoids
and (non-commutative) semirings. The former admit a
rather simple and direct proof, while the latter are sufficient
to expose concisely the main difficulty in handling Kleene
algebras.

3.1 Monoids

Definition 1. Typed monoids are defined by the signature
{·2, 10}, together with the following type and equality in-

INRIA



Untyping Typed Algebraic Structures and Colouring Proof Nets of Cyclic Linear Logic 5

ference rules (in addition to the rules from Section 2).

` 1 : n→ n
TO

` a : n→ m ` b : m→ p

` a · b : n→ p
TD

` 1 = 1 : n→ n
O

` a = a′ : n→ m ` b = b′ : m→ p

` a · b = a′ · b′ : n→ p
D

` a : n→ m

` 1 · a = a : n→ m
OD

` a : n→ m

` a · 1 = a : n→ m
DO

` a : n→ m ` b : m→ p ` c : p→ q

` (a · b) · c = a · (b · c) : n→ q
DA

In other words, models of typed monoids are just categories:
typing rules (TO) and (TD) assert that 1 and · correspond to
identities and composition; the last three rules assert that
identities are left and right units, and that composition is
associative. Rules (O) and (D) ensure that equality is re-
flexive (point (i) below) and preserved by composition. As
expected, equality relates correctly typed terms only (ii):

Lemma 2.

(i) For all a, n,m such that ` a : n → m, we have
` a = a : n→ m.

(ii) For all a, b, n,m such that ` a = b : n → m, we
have ` a, b : n→ m.

Moreover, in this setting, type judgements enjoy some form
of injectivity (types are not uniquely determined due to the
unit element, which is typed in a polymorphic way).

Lemma 3. Let a, n,m, n′,m′ such that ` a : n→ m and
` a : n′ → m′; we have n = n′ iff m = m′.

We need another lemma to obtain the untyping theorem: all
terms related by the untyped equality admit the same types.

Lemma 4. Let a, b such that ` a = b; for all n,m, we
have ` a : n→ m iff ` b : n→ m.

Theorem 5. Let a, b, n,m such that ` a, b : n → m. If
` a = b then ` a = b : n→ m.

Proof. We reason by induction on the derivation ` a = b;
the interesting cases are the following ones:

• the last rule used is the transitivity rule (T): we have
` a = b, ` b = c, ` a, c : n → m, and we need to

show that ` a = c : n → m. By Lemma 4, we have
` b : n → m, so that, by the induction hypotheses,

we get ` a = b : n → m and ` b = c : n → m,
which allow us to apply rule (T) in the typed setting.

• the last rule used is the compatibility of · (D): we have
` a = a′, ` b = b′, ` a · b, a′ · b′ : n → m,

and we need to show that ` a · b = a′ · b′ : n → m.
By case analysis on the typing judgements, we deduce
that ` a : n → p, ` b : p → m, ` a′ : n → q,
` b′ : q → m, for some p, q. Thanks to Lemmas 3

and 4, we have p = q, so that we can conclude using
the induction hypotheses ( ` a = a′ : n → p and
` b = b′ : p→ m), and rule (D). �

Note that the converse of Theorem 5 ( ` a = b : n → m
entails ` a = b) is straightforward, so that we actually have
an equivalence.

3.2 Non-commutative semirings

Definition 6. (Non-commutative) typed semirings are de-
fined by the signature {·2,+2, 10, 00}, together with the fol-
lowing type and equality inference rules (in addition to the
rules from Definition 1 and Section 2).

` 0 : n→ m
TZ

` a, b : n→ m

` a+ b : n→ m
TP

` 0 = 0 : n→ m
Z

` a = a′ : n→ m ` b = b′ : n→ m

` a+ b = a′ + b′ : n→ m
P

` a : n→ m

` a+ 0 = a : n→ m
PZ

` a, b : n→ m

` a+ b = b+ a : n→ m
PC

` a, b, c : n→ m

` (a+ b) + c = a+ (b+ c) : n→ m
PA

` a : n→ m ` b, c : m→ p

` a · (b+ c) = a · b+ a · c : n→ p
DP

` a : n→ m

` a · 0 = 0 : n→ p
DZ

` a : n→ m ` b, c : p→ n

` (b+ c) · a = b · a+ c · a : p→ m
PD

` a : n→ m

` 0 · a = 0 : p→ m
ZD

In other words, typed semiring are categories enriched over
a commutative monoid: each homset is equipped with a
commutative monoid structure (typing rules (TZ,TP) and
rules (P,PZ,PC,PA)), and composition distributes over these
monoid structures (rules (DP,DZ,PD,ZD)).

RR n° 7176



6 Damien Pous 2

Lemma 2 is also valid in this setting: equality is reflexive
and relates correctly typed terms only. However, due to the
presence of the annihilator element (0), Lemmas 3 and 4 no
longer hold: 0 has any type, and we have ` x · 0 · x = 0
while x · 0 · x only admits Γ(x) as a valid type. Moreover,
some valid proofs cannot be typed just by adding decora-
tions: for example, 0 = 0 ∗ a = 0 is a valid untyped proof
of 0 = 0, for any a; however, this proof cannot be typed if
a is ill-typed. Therefore, we have to adopt another strategy:
we reduce the problem to the annihilator-free structure, by
showing that equality proofs can be factorised so as to use
rules (PZ), (DZ), and (ZD) at first, as oriented rewriting rules.

Definition 7. Let a be a term; we denote by a↓ the normal
form of a, obtained with the following convergent rewriting
system:

a+ 0→ a 0 + a→ a 0 · a→ 0 a · 0→ 0

We say that a is strict if a↓ 6= 0. We let `+ = : →
denote the strict equality judgement obtained by removing
rules (DZ) and (ZD), and replacing rules (DP) and (PD) with
the following variants, where the factor has to be strict.

` a : n→ m a↓ 6= 0 ` b, c : m→ p

`+ a · (b+ c) = a · b+ a · c : n→ p
DP+

` a : n→ m a↓ 6= 0 ` b, c : p→ n

`+ (b+ c) · a = b · a+ c · a : p→ m
PD+

Type derivations about strict terms enjoy the kind of injec-
tivity we had for monoids:

Lemma 8. For all strict term a such that ` a : n → m
and ` a : n′ → m′, we have n = n′ iff m = m′.

Then, using the same methodology as previously, one easily
obtain the untyping theorem for strict equality judgements:

Proposition 9. Let a, b such that `+ a = b; for all n,m
such that ` a, b : n→ m, we have `+ a = b : n→ m.

Note that the patched rules for distributivity, (DP+) and
(PD+) are required in order to obtain the counterpart of
Lemma 4: if a was not required to be strict, then we would
have `+ 0 · (x+ y) = 0 · x+ 0 · y, and the right-hand
side can be typed in environment Γ = {x 7→ (3, 2), y 7→
(4, 2)} while the left-hand side cannot.

We now have to show that any equality proof can be fac-
torised, so as to obtain a strict equality proof relating the
corresponding normal forms:

Proposition 10. For all a, b such that ` a = b, we have
`+ a↓ = b↓.

Proof. We first show by induction that whenever ` a = b,
a is strict iff b is strict (†). Then we proceed by induction
on the derivation ` a = b, we detail only some cases:

(D) we have `+ a↓ = a′↓ and `+ b↓ = b′↓ by induction;
we need to show that `+ (a · b)↓ = (a′ · b′)↓. If one
of a, a′, b, b′ is not strict, then (a · b)↓ = (a′ · b′)↓ =
0, thanks to (†), so that we are done; otherwise,
(a · b)↓ = a↓ · b↓, and (a′ · b′)↓ = a′↓ · b′↓, so that
we can apply rule (D).

(DZ) trivial, since (a · 0)↓ = 0.

(DP) we need to show that `+ (a · (b+ c))↓ =
(a · b+ a · c)↓; if one of a, b, c is not strict, both
sides reduce to the same term, so that we can ap-
ply Lemma 2(i) (which holds in this setting); oth-
erwise we have (a · (b+ c))↓ = a↓ · (b↓ + c↓) and
(a · b+ a · c)↓ = a↓ · b↓+a↓ · c↓, so that we can apply
rule (DP+) (a↓ is obviously strict). �

Since the normalisation procedure preserves types and re-
spects equalities, we finally obtain the untyping theorem.

Lemma 11. For all a, n,m such that ` a : n → m, we
have ` a↓ : n→ m and ` a = a↓ : n→ m.

Theorem 12. In semirings, for all a, b, n,m such that we
have ` a, b : n→ m, ` a = b iff ` a = b : n→ m.

Proof. The reverse implication is straightforward; we prove
the direct one. By Lemma 11, using the transitivity and
symmetry rules, it suffices to show ` a↓ = b↓ : n → m.
This is clearly the case whenever `+ a↓ = b↓ : n → m,
which follows from Props. 10 and 9. �

3.3 Kleene algebras

Kleene algebras are idempotent semirings equipped with
a Kleene star operation [14]; they admit several impor-
tant models, among which binary relations and regular lan-
guages (the latter is the initial model [17, 15]; since equal-
ity of regular languages is decidable, so is the equational
theory of Kleene algebras). Like previously, this structure
can be typed in a rather natural way, where star operates
on “square” types: types of the form n → n, i.e., square
matrices or homogeneous binary relations.

Definition 13. Typed Kleene algebras are defined by the
signature {·2,+2, ?1, 10, 00}, together with the following
inference rules (in addition to the rules from Definitions 1
and 6, and Section 2), where ` a ≤ b : n → m is an

INRIA
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abbreviation for ` a+ b = b : n→ m.

` a : n→ n

` a? : n→ n
TS

` a = b : n→ n

` a? = b? : n→ n
S

` a : n→ m

` a+ a = a : n→ m
PI

` a : n→ n

` 1 + a · a? = a? : n→ n
SP

` a · b ≤ b : n→ m

` a? · b ≤ b : n→ m
SL

` b · a ≤ b : n→ m

` b · a? ≤ b : n→ m
SR

The untyped version of this axiomatisation is that from
Kozen [15]: axiom (PI) corresponds to idempotence of +,
the three other rules define the star operation. The last
two rules have premises, so that we are no longer in a
purely equational setting (the algebra of regular events is
not finitely based [23]). This is not problematic for our pur-
pose: one can extend the proofs from the previous section
without unexpected difficulties: we add the rule 0? → 1
to the rewriting system used for normalising terms, and we
require b to be strict in the strict versions of rules (SL) and
(SR). We do not give more details here: complete proofs are
available as Coq scripts [21].

Theorem 14. In Kleene algebras, for all a, b, n,m with
` a, b : n→ m, we have ` a = b iff ` a = b : n→ m.

4 Residuated lattices

We now move to our second main example, residuated lat-
tices. These structures also admit binary relations as mod-
els; they are of special interest since they make it possible to
reason algebraically about well-founded relations. For ex-
ample, one can use residuation to prove Newman’s Lemma
in relation algebras [7]. We start with a simpler structure.

A residuated monoid is a tuple (X,≤, ·, 1, /, \), such
that (X,≤) is a partial order, (X, ·, 1) is a monoid whose
product is monotonic (a ≤ a′ and b ≤ b′ entail a·b ≤ a′ ·b′),
and \, / are binary operations, respectively called left and
right divisions, characterised by the following equivalences:

a · b ≤ c ⇔ b ≤ a\c ⇔ a ≤ c/b

Such a structure can be typed in a natural way, by using the
following rules for left and right divisions:

` c : n→ m ` a : n→ p

` a\c : p→ m
TL

` c : n→ m ` b : p→ m

` c/b : n→ p
TR

Although we can easily define a set of axioms to capture
equalities provable in residuated monoids [13], the transi-
tivity rule (T) becomes problematic in this setting. Instead,

we exploit a characterisation due to Ono and Komori [20],
based on a Gentzen proof system. Indeed, the “cut” rule
corresponding to this system, which plays the role of the
transitivity rule, can be eliminated. Therefore, this char-
acterisation allows us to avoid the problems we encounter
with a standard equational proof system.

4.1 Gentzen proof system for residuated monoids

Let letters l, k, h range over lists of terms, let l; k denote the
concatenation of lists l and k, and let ε be the empty list. The
Gentzen proof system is presented below; it relates lists of
terms to terms. Its presentation is quite standard [13]: there
is an axiom rule (V), and, for each operator, and introduc-
tion and an elimination rule.

x ` x
V

ε ` 1
IO

l; l′ ` a
l; 1; l′ ` a

EO

l ` a l′ ` a′

l; l′ ` a · a′
ID

l; b; c; l′ ` a
l; b · c; l′ ` a

ED

l; b ` a
l ` a/b

IR
k ` b l; c; l′ ` a
l; c/b; k; l′ ` a

ER

b; l ` a
l ` b\a

IL
k ` b l; c; l′ ` a
l; k; b\c; l′ ` a

EL

The axiom rule can be generalised to terms (i), the cut
rule is admissible (ii), and the proof system is correct and
complete w.r.t. residuated monoids (iii):

Proposition 15.

(i) For all a, we have a ` a.

(ii) For all l, k, k′, a, b such that l ` a and k; a; k′ ` b, we
have k; l; k′ ` b.

(iii) For all a, b, we have a ` b iff a ≤ b holds in all resid-
uated monoids.

Proof. The first point is easy; see [20, 19, 13] for cut ad-
missibility and completeness. �

Since the proof system has the sub-formula property, The
third point (iii) leads to decidability of the equational the-
ory of residuated monoids. (The fact that the sequent system
actually characterises the partial order is not problematic: to
decide an equality a = b, it suffices to decide whether both
a ` b and b ` a hold.)

We add types to this proof system in Fig. 1, where the
typing judgement has been extended to lists of terms using
the following rules: concatenation is typed like a product.

` ε : n→ n
TE

` a : n→ m ` l : m→ p

` a; l : n→ p
TC

RR n° 7176



8 Damien Pous 3

Γ(x) = (n,m)

x ` x : n→ m
V

ε ` 1 : n→ n
IO

l; l′ ` a : n→ m

l; 1; l′ ` a : n→ m
EO

l ` a : n→ m l′ ` a′ : m→ p

l; l′ ` a · a′ : n→ p
ID

l; b; c; l′ ` a : n→ m

l; b · c; l′ ` a : n→ m
ED

` b : m→ p l; b ` a : n→ p

l ` a/b : n→ m
IR

` l′ : m→ q k ` b : n→ m l; c; l′ ` a : p→ q

l; c/b; k; l′ ` a : p→ q
ER

` b : p→ m b; l ` a : p→ n

l ` b\a : m→ n
IL

` l : p→ m k ` b : m→ n l; c; l′ ` a : p→ q

l; k; b\c; l′ ` a : p→ q
EL

Figure 1. Typed Sequents for Residuated Monoids.

(Be careful not to confuse ` a, b : n→ m, which indicates
that both a and b have type n → m, with ` a; b : n → m,
which indicates that the list a; b has type n → m.) Like
previously, the untyped proof system can be recovered by
considering trivial types and environments. Note that there
are several ways to add type decorations to the proof sys-
tem; we chose to add a minimal set of decorations, with the
constraint that the following sanity requirement should be
satisfied (counterpart of Lemma 2(ii)):

Lemma 16. For all l, a, n,m, if l ` a : n → m then we
have ` l, a : n→ m.

We were able to prove the untyping theorem using this proof
system, but for the unit-free fragment only: we needed to
assume that terms have at most one type, which is not true
in presence of 1. This proof was rather involved, so that we
did not manage to circumvent this difficulty in a direct way.
Instead, as hinted in the introduction, we have to move to
the following more symmetrical setting.

4.2 Cyclic MLL

The sequent system for residuated monoids actually corre-
sponds to a non-commutative version of intuitionistic mul-
tiplicative linear logic (IMLL) [9]: the product (·) is a
non-commutative tensor (⊗), and left and right divisions
(\, /) are the corresponding left and right linear implica-
tions (−◦, ◦−). Moreover, it happens that this system is
just the intuitionistic fragment of cyclic multiplicative lin-
ear logic (MLL) [26]. The untyping theorem revealed easier
to prove in this setting, which we describe below.

We assume a copy X⊥ of the set of variables (X ), and
we denote by x⊥ the corresponding elements which we call
dual variables. From now on, we shall consider terms with
both kinds of variables: T (Σ + X + X⊥). We keep an
algebraic terminology to remain consistent with the previ-
ous sections; notice that using logic terminology, a term is
a formula and a variable is an atomic formula.

Definition 17. Typed MLL terms are defined by the signa-
ture {⊗2,`2, 10,⊥0}, together with the following typing
rules:

` a : n→ m ` b : m→ p

` a⊗ b : n→ p
T⊗

` a : n→ m ` b : m→ p

` a` b : n→ p
T`

` 1 : n→ n
T1 ` ⊥ : n→ n

T⊥

Γ(x) = (n,m)
` x : n→ m

TV
Γ(x) = (n,m)

` x⊥ : m→ n
TV⊥

Tensor (⊗) and par (`) are typed like the previous dot
operation; bottom (⊥) is typed like the unit (1); dual vari-
ables are typed by mirroring the types of the corresponding
variables. Linear negation is defined recursively over terms
and list of terms, as follows:

(a⊗ b)⊥ , b⊥ ` a⊥ 1⊥ , ⊥ (x)⊥ , x⊥

(a` b)⊥ , b⊥ ⊗ a⊥ ⊥⊥ , 1 (x⊥)⊥ , x

(a; l)⊥ , l⊥; a⊥ ε⊥ , ε

Note that since we are in a non-commutative setting, nega-
tion has to reverse the arguments of tensors and pars, as
well as lists. Negation is involutive and mirrors types judge-
ments:

Lemma 18. For all l we have l⊥⊥ = l, and for all n,m,
` l : n→ m iff ` l⊥ : m→ n.

If we were using a two-sided presentation of MLL, judge-
ments would be of the form l ` k : m → n, intuitively
meaning “l ` k is derivable in cyclic MLL, and lists l and
k have type m → n”. Instead, we work with one-sided se-
quents to benefit from the symmetrical nature of MLL. At
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Γ(x) = (n,m)

` x⊥;x : m
A

` 1 : n
1

` l : n

` ⊥; l : n
⊥

` l; a : n ` b; k : n

` l; a⊗ b; k : n
⊗

` a; b; l : n

` a` b; l : n
`

` a : n→ m ` l; a : m

` a; l : n
E

Figure 2. Typed Sequents for Cyclic MLL.

the untyped level, this means that we replace l ` k with
` l⊥; k. According to the previous intuitions, the list l⊥; k

has a square type n → n: object m is hidden in the con-
catenation, so that it suffices to record the outer object (n).
Judgements finally take the form ` l : n, meaning “the
one-sided MLL sequent ` l is derivable at type n→ n”.

Definition 19. Typed cyclic MLL is defined by the sequent
calculus from Fig. 2.

Except for type decorations, the system is standard: the
five first rules are the logical rules of MLL [9]. Rule (E)
is the only structural rule, this is a restricted form of the
exchange rule, yielding cyclic permutations: sequents have
to be thought as rings [26]. As before, we added type dec-
orations in a minimal way, so as to ensure that derivable
sequents have square types, as explained above:

Lemma 20. For all l, n, if ` l : n then ` l : n→ n.

We now give a graphical interpretation of the untyping
theorem, using proof nets. Since provability is preserved
by cyclic permutations, one can draw proof structures by
putting the terms of a sequent on a circle [26]. For example,
a proof π of a sequent ` l0, . . . , li will be represented by a
proof net whose interface is given by the left drawing below.

l0
l1

l2

li

. .
.

l0
l1

l2

li

. .
.

n1

n2

n0
ππ

Suppose now that the corresponding list admits a square
type: ` l : n → n, i.e., ∀j ≤ i, ` lj : nj → nj+1,
for some n0, . . . , ni+1 with n = n0 = ni+1. One can add
these type decorations as background colours, in the areas
delimited by the terms, as we did on the right-hand side.

The logical rules of the proof system (Fig. 2) can then
be represented by the proof net constructions from Fig. 3.
(Thanks to this sequent representation, the exchange rule
(E) is implicit.) Since these constructions preserve pla-
narity, all proof nets are planar, so that the idea of back-
ground colours makes sense. Moreover, they can be

li k1

⊥

l1li

l1li

n

n

l1 ki

x 1
n

n

n
x⊥

m

. .
.

. . .

π

π

`

π

⊗

π′

a⊗ b

. . .

a ` b

. . .

Figure 3. Proof nets for Cyclic MLL.

coloured in a consistent way, so that typed derivations cor-
respond to proof nets that can be entirely and consistently
coloured. Therefore, one way to prove the untyping the-
orem consists in showing that any proof net whose outer
interface can be coloured can be coloured entirely.

As an example, we give an untyped derivation below, to-
gether with the corresponding proof net. Since the conclu-
sion of this proof has type p→ p whenever Γ(x) = n→ m
and Γ(y) = m → p, the outer interface of the proof net
can be coloured (here, with colours p and n). Our untyping
theorem will ensure that there exists a typed proof; indeed,
the whole proof net can be coloured in a consistent way.

` x
⊥

, x
A

` y
⊥

, y
A

` y, y
⊥ E

` x
⊥

, (x⊗ y), y
⊥ ⊗

` x
⊥

, (x⊗ y)` y
⊥ ` ` y

⊥
, y

A

` y, y
⊥ E

` x
⊥

, ((x⊗ y)` y
⊥

)⊗ y, y
⊥ ⊗

` ⊥, x
⊥

, ((x⊗ y)` y
⊥

)⊗ y, y
⊥ ⊥

` y
⊥

,⊥, x
⊥

, ((x⊗ y)` y
⊥

)⊗ y
E

` y
⊥ `⊥` x

⊥
, ((x⊗ y)` y

⊥
)⊗ y

`

n

`

⊗

`

`

p

p
p

m

⊗

We do not give a formal account of this graphical in-
terpretation here, since we merely use it to give some intu-
itions. We now embark in the proof of the untyping theorem
for cyclic MLL; the key property is that the types of deriv-
able sequents are all squares:

Proposition 21. For all l such that ` l, for all n,m such
that ` l : n→ m, we have n = m.

Proof. We proceed by induction on the untyped derivation
` l, but we prove a stronger property: “the potential types

of all cyclic permutations of l are squares”, i.e., for all h,k
such that l = h; k, for all n,m such that ` k;h : n → m,
n = m. The most involved case is that of the tensor rule.
Using symmetry arguments, we can assume that the cut-
ting point belongs to the left premise: the conclusion of the
tensor rule is ` l; l′; a ⊗ b; k, we suppose that the induc-
tion hypothesis holds for l; l′; a and b; k, and knowing that
` l′; a⊗ b; k; l : n→ m, we have to show n = m. Clearly,

we have ` l′; a : n→ p, ` b; k : p→ q, and ` l : q → m
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10 Damien Pous 4

for some p, q. By induction on the second premise, we have
p = q, so that ` l′; a; l : n → m. Since the latter list
is a cyclic permutation of l; l′; a, we can conclude with the
induction hypothesis on the first premise. �

Theorem 22. In cyclic MLL, for all l, n with ` l : n→ n,
we have ` l iff ` l : n.

Proof. The right-to-left implication is straightforward; for
the direct implication, we proceed by induction on the un-
typed derivation. The previous proposition is required in
the case of the tensor rule: we know that ` l; a, ` b; k,
and ` l; a⊗ b; k : n → n, and we have to show that
` l; a⊗ b; k : n. Necessarily, there is some m such that
` l; a : n → m and ` b; k : m → n; moreover, by

Prop. 21, n = m. Therefore, we can apply the induction
hypotheses (so that ` l; a : n and ` b; k : n) and we
conclude with the typed tensor rule. �

4.3 Intuitionistic fragment

To deduce that the untyping theorem holds in residuated
monoids, it suffices to show that the typed proof system
from Fig. 1 corresponds to the intuitionistic fragment of that
from Fig. 2. This is well-known for the untyped, commuta-
tive, case, and type decorations or cyclicity do not add par-
ticular difficulties. Therefore, we just give a brief overview
of the corresponding proof.

The idea is to define the following families of input and
output terms (Danos-Regnier polarities [24]), and to work
with sequents composed of exactly one output term and an
arbitrary number of input terms: the rules from Fig. 2 (or
the proof nets from Fig. 3) preserve this property.

i ::= x⊥
∣∣ ⊥ ∣∣ i` i ∣∣ i⊗ o ∣∣ o⊗ i

o ::= x
∣∣ 1

∣∣ o⊗ o ∣∣ i` o ∣∣ o` i
Negation (−⊥) establishes a bijection between input and
output terms. Terms of residuated monoids (i.e., IMLL for-
mulae) are encoded into output terms as follows.

ba · bc , bac ⊗ bbc bxc , x
ba/bc , bac` bbc⊥ b1c , 1

ba\bc , bac⊥ ` bbc
This encoding is a bijection between IMLL terms and out-
put MLL terms; it preserves typing judgements:

Lemma 23. For all a, n,m, we have ` a : n → m iff
` bac : n→ m.

(Note that we heavily rely on overloading to keep notations
simple.) The following proposition shows that we actually
obtained a fragment of typed cyclic MLL; it yields to the
untyping theorem for residuated monoids.

Proposition 24. For all l, a, n,m with ` l, a : n→ m, we
have l ` a : n→ m iff ` blc⊥; bac : m.

Proof. The forward implication is proved by an induction
on the sequent derivation. For the reverse direction, we ac-
tually prove the following stronger property, by induction
on the untyped MLL derivation: “for all h, a, k such that
` bhc⊥; bac; bkc⊥, for all n,m such that ` h; k : n→ m

and ` a : n → m, we have h; k ` a : n → m”. Prop. 21
is required in the case of the tensor rule. (The generalisa-
tion of the statement with two lists h, k is required to handle
the exchange rule; the fact that we use an induction on an
untyped derivation is just for commodity, it does not matter
thanks to Thm. 22.) �

Corollary 25. In residuated monoids, for all l, a, n,m such
that ` l, a : n→ m, we have l ` a iff l ` a : n→ m.

4.4 Residuated lattices: additives.

The Gentzen proof system we presented for residuated
monoids was actually designed for residuated lattices [20],
obtained by further requiring the partial order (X,≤) to be
a lattice (X,∨,∧). Binary relations fall into this family,
by considering set-theoretic unions and intersections. On
the logical side, this amounts to considering the additive bi-
nary connectives (⊕,&), i.e., working in the intuitionistic
fragment of multiplicative additive linear logic (IMALL),
without additive constants.

The previous proofs scale without major difficulty: by
working in cyclic MALL without additive constants, we get
an untyping theorem for involutive residuated lattices [25];
we deduce the untyping theorem for residuated lattices by
considering the corresponding intuitionistic fragment.

5 Conclusions and directions for future work

We proved untyping theorems for several standard struc-
tures, allowing us to extend decidability results to the typed
settings. All results have been checked [21] in the Coq proof
assistant. We conclude by discussing applications, related
work, and directions for future work.

5.1 Applications

Improving proof search for residuated structures. All
sequent proof systems we mentioned have the sub-formula
property, so that provability is decidable in each case, using
a simple proof search algorithm [19]. The untyping theorem
can be used to cut off useless branches. Indeed, recall the
typed rule for the tensor (Fig. 2), which is equivalent to the
following one, since sequents are circular lists:

` a : m→ n ` l; a : n ` b; k : n
` a⊗ b; k; l : m

⊗

INRIA
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When using this rule during proof search, one has to choose
where to split the sequent (where to put the semicolon be-
tween k and l). While all possibilities have to be tried in the
untyped setting, this is not the case in the typed setting: the
splitting point has to respect types.

Now, starting from an untyped list of terms l, one can
easily compute an abstract ‘most general type and environ-
ment’ (n,Γ), such that Γ ` l : n→ n holds (taking N as the
set of types, for example). Thanks to the untyping theorem,
if ` l holds, then we also have Γ ` l : n, so that we have at
least one proof that respects the most general type, and we
can restrict proof search to the corresponding well-behaved
branches. Moreover, this trick can be refined during proof
search, by generalising the most general type whenever pos-
sible: moving to the premises of the tensor rule may release
some type constraints, half of the terms being thrown away.

Some experiments on a prototype tend to show that this
idea is promising; we still need to understand how it inter-
acts with focusing [1].

Decision of typed Kleene algebras in Coq. The untyp-
ing theorem for typed Kleene algebras is quite important in
the ATBR Coq library [2]: it allows one to use our tactic for
Kleene algebras [3] in the typed setting, and, in particular,
with heterogeneous binary relations. The underlying deci-
sion procedure being quite involved, we can hardly imagine
to prove its soundness in the typed setting; even writing a
type-preserving version of the algorithm seems challenging.

At another level, we used the untyping theorem for
semirings in order to formalise Kozen’s completeness
proof [15] for Kleene algebras (the fact that regular lan-
guages are the initial model, which we had to prove to reach
all models). Indeed, this proof heavily relies on matrix con-
structions, so that having adequate lemmas and tactics for
working with possibly rectangular matrices was a big plus:
this allowed us to avoid the ad-hoc constructions Kozen
used to inject rectangular matrices into square ones.

5.2 References and related work

The relationship between residuated lattices and sub-
structural logics is due to Ono and Komori [20]; see [13]
for a detailed survey about these structures. Cyclic linear
logic was suggested by Girard and studied by Yetter [26].
To the best of our knowledge, the idea of adding of types to
the above structures is new. The axiomatisation of Kleene
algebras is due to Kozen [15].

Our typed structures can be seen as very special cases of
partial algebras [4], where the domain of partial operations
is defined by typing judgements. Similarly, one could use
many-sorted algebras [11] to mimic our types using sorts.
Several encodings from partial algebras to total ones were
proposed in the literature [18, 5]. Although they are much

more general than our case-by-case study, these results do
not apply here: these encodings do not preserve the con-
sidered theory since they need to introduce new symbols
and equations. As a consequence, ordinary untyped deci-
sion procedures can no longer be used after the translation.
Dojer has also shown that under some conditions, conver-
gent term rewriting systems for total algebras can be used to
prove existence equations in partial algebras [6]. Although
this seems applicable for semirings; this approach does not
scale to Kleene algebras or residuated lattices, for which
decidability does not arise from a term rewriting system.

Closer to our work is that from Kozen, who first pro-
posed the idea of untyping typed Kleene algebras, in or-
der to avoid the aforementioned matrix constructions [16].
He provided a different answer, however: using model-
theoretic arguments, he proved an untyping theorem for the
Horn theory of “1-free Kleene algebras”. The restriction to
1-free expressions is required, as shown by the following
counter-example: ` 0 = 1 ⇒ a = b is a theorem of semir-
ings, although there are non trivial typed semirings where
0 = 1 holds at some types (e.g., empty matrices), while
a = b is not universally true at other types.

5.3 Handling other structures

Residuated pointed lattices: additive constants. We do
not know how to handle residuated pointed lattices, i.e.,
residuated lattices with lower and upper bounds (0,>).
These bounds correspond to additive constants in MALL;
like for semirings (Sect. 3.2), the problem comes from their
polymorphic typing. The typing rules are given below, to-
gether with the rule for top (there is no rule for zero).

` 0 : n→ m
T0 ` > : n→ m

T>
` l : m→ n

` >; l : n
>

First, our proof breaks because Prop. 21 no longer holds:
we have ` >, while this sequent admits non square types.
More importantly, there are valid untyped derivations that
cannot be typed directly, by adding decorations: if Γ(x) =
n → m with n 6= m, the left derivation below is not valid,
while the underlying untyped derivation is.

` >;x : m
>

` >;x⊥ : n
>

` >;x⊗>;x⊥ : n
⊗

` >;x⊗>;x⊥ : n
>

As shown on the right-hand side, this typed sequent is
nonetheless derivable: the untyping theorem is not refuted
by this example. However this means that any potential
proof has to rearrange derivations, as we did in Section 3.2.
Unlike for semirings or Kleene algebras, we were not able
to obtain a factorisation property here (Prop. 10): expres-
sions like x ⊗ > and x ` 0 (or 0/x and x/> in the intu-
itionistic fragment) cannot be simplified, so that we cannot
reduce the problem to the annihilator-free case.
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Action algebras. Action algebras [22, 12] are a natural
extension of the structures we studied in this paper: they
are also called residuated Kleene algebras; they combine
the ingredients from residuated lattices and Kleene alge-
bras. Although we do not know whether the untyping the-
orem holds in this case; we can think of two strategies
to tackle this problem: 1) find a cut-free extension of the
Gentzen proof system for residuated lattices (this is left as
an open question in [12]; it would entail decidability of the
equational theory of action algebras), and adapt our cur-
rent proof; 2) find a ‘direct’ proof of the untyping theorem
for residuated monoids, without going through the Gentzen
proof system, so that the methodology we used to obtain the
untyping theorem for Kleene algebras can be extended.

Allegories. Our proofs about semirings can easily be
adapted to handle the cases of allegories and distributive al-
legories [8]; however, the case of division allegories, where
left and right divisions are added, remains open. The first
approach we mentioned above is not applicable here: the
equational theory of allegories is undecidable, so that there
is no hope to find a useful extension of the proof system we
used for residuated monoids.

5.4 Towards a generic theory

The typed structures we focused on can be described in
terms of enriched categories, and the untyping theorems can
be rephrased as asserting the existence of a faithful func-
tor to a one-object category. It would therefore be interest-
ing to find out whether our typed structures can be given a
generic definition in category theory, and whether one can
give a reasonable characterisation of the class of structures
for which the untyping theorem holds.

For structures that are varieties, another approach would
consist in using term rewriting theory to obtain generic fac-
torisation theorems (Lemma 10, which we used to handle
the annihilating element in semirings would become a par-
ticular case). This seems rather difficult, however, since this
kind of properties are quite sensitive to the whole set of op-
erations and axioms that are considered: adding left and
right divisions prevents us from removing annihilators, al-
though axioms about divisions do not mention annihilators.

Last, and rather surprisingly, we have no counter-
example yet, i.e., an algebraic structure which can be typed
in an interesting way, and for which we could prove that the
untyping theorem does not hold. An ad-hoc system could
certainly be designed to this end; finding a standard struc-
ture would be much more interesting: it would help us in
delimiting the scope of a potential generic theory.
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