On the equivalence between hierarchical segmentations and ultrametric watersheds - Archive ouverte HAL
Article Dans Une Revue Journal of Mathematical Imaging and Vision Année : 2011

On the equivalence between hierarchical segmentations and ultrametric watersheds

Résumé

We study hierarchical segmentation in the framework of edge-weighted graphs. We define ultrametric watersheds as topological watersheds null on the minima. We prove that there exists a bijection between the set of ultrametric watersheds and the set of hierarchical segmentations. We end this paper by showing how to use the proposed framework in practice in the example of constrained connectivity; in particular it allows to compute such a hierarchy following a classical watershed-based morphological scheme, which provides an efficient algorithm to compute the whole hierarchy.
Fichier principal
Vignette du fichier
ultrametrics_long.pdf (1.76 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00419373 , version 1 (09-02-2010)
hal-00419373 , version 2 (17-12-2010)

Identifiants

Citer

Laurent Najman. On the equivalence between hierarchical segmentations and ultrametric watersheds. Journal of Mathematical Imaging and Vision, 2011, 40 (3), pp.231-247. ⟨10.1007/s10851-011-0259-1⟩. ⟨hal-00419373v2⟩
694 Consultations
463 Téléchargements

Altmetric

Partager

More