
HAL Id: hal-00419373
https://hal.science/hal-00419373v2

Submitted on 17 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the equivalence between hierarchical segmentations
and ultrametric watersheds

Laurent Najman

To cite this version:
Laurent Najman. On the equivalence between hierarchical segmentations and ultrametric watersheds.
Journal of Mathematical Imaging and Vision, 2011, 40 (3), pp.231-247. �10.1007/s10851-011-0259-1�.
�hal-00419373v2�

https://hal.science/hal-00419373v2
https://hal.archives-ouvertes.fr


JMIV manuscript No.
(will be inserted by the editor)

On the equivalence between hierarchical segmentations
and ultrametric watersheds

Laurent Najman

Received: date / Accepted: date

Abstract We study hierarchical segmentation in the
framework of edge-weighted graphs. We define ultra-

metric watersheds as topological watersheds null on the

minima. We prove that there exists a bijection between

the set of ultrametric watersheds and the set of hier-

archical segmentations. We end this paper by showing
how to use the proposed framework in practice on the

example of constrained connectivity; in particular it al-

lows to compute such a hierarchy following a classical

watershed-based morphological scheme, which provides
an efficient algorithm to compute the whole hierarchy.

Introduction

This paper1 is a contribution to a theory of hierar-

chical (image) segmentation in the framework of edge-

weighted graphs. Image segmentation is a process of

decomposing an image into regions which are homo-
geneous according to some criteria. Intuitively, a hier-

archical segmentation represents an image at different

resolution levels.

In this paper, we introduce a subclass of edge-weigh-

ted graphs that we call ultrametric watersheds. Theo-
rem 13 states that there exists a one-to-one correspon-

dence, also called a bijection, between the set of in-

dexed hierarchical segmentations and the set of ultra-

metric watersheds. In other words, to any hierarchical
segmentation (whatever the way the hierarchy is built),

it is possible to associate a representation of that hierar-

chy by an ultrametric watershed. Conversely, from any
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ultrametric watershed, one can infer a indexed hierar-
chical segmentation.

This theorem is illustrated on Fig. 1, that is pro-

duced using the method proposed in [1]: what is usually

done is to compute from an original image (Fig. 1.a) a

hierarchical segmentation that can be represented by
a dendrogram (Fig. 1.b, see section 4). The borders of

the segmentations extracted from the hierarchy (such

as the one seen in Fig. 1.c) can be stacked to form a

map (Fig. 1.d) that allows for the visual representation
of the hierarchical segmentation. Theorem 13 gives a

characterization of the class of maps (called ultramet-

ric watersheds) that represent a hierarchical segmen-

tation; more surprisingly, Theorem 13 also states that

the dendrogram can be obtained after the ultrametric
watershed has been computed.

Following [2], we can say that, independently of its

theoretical interest, such a bijection theorem is useful

in practice. Any hierarchical segmentation problem is a
priori heterogeneous: assign to an edge-weighted graph

an indexed hierarchy. Theorem 13 allows such classifi-

cation problem to become homogeneous: assign to an

edge-weighted graph a particular edge-weighted graph

called ultrametric watershed. Thus, Theorem 13 gives a
meaning to questions like: which hierarchy is the closest

to a given edge-weighted graph with respect to a given

measure or distance?

The paper is organised as follow. Related works are

examined in section 1. We introduce segmentation on
edges in section 2, and in section 3, we adapt the topo-

logical watershed framework from the framework of gra-

phs with discrete weights on the nodes to the one of

graphs with real-valued weights on the edges. We then
define (section 4) hierarchies and ultrametric distances.

In section 5, we introduce hierarchical segmentations

and ultrametric watersheds, the main result being the
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(a) Original image (b) Dendrogram of the hierarchical segmentation

(c) One segmentation extracted from the hierarchy (d) An ultrametric watershed corresponding to the
hierarchical segmentation

Fig. 1 An example of a hierarchical segmentation produced by the method of L. Guigues [1] et al.. The classical order for
reading the images is (a), (b), (c), (d). But Theorem 13 states that the reading order can also be (a), (d), (c), (b) (see text).

existence of a bijection between these two sets (Th. 13).

In the last part of the paper (section 6), we show how

the proposed framework can be used in practice. After

proposing (section 6.1) a convenient way to represent

hierarchies as a discrete image, we demonstrate, using
ultrametric watersheds, how to compute constrained

connectivity [3] as a classical watershed-based morpho-

logical scheme; in particular, it allows us to provide an

efficient algorithm to compute the whole constrained-
connectivity hierarchy.

Apart when otherwise mentionned, and to the best

of the author’s knowledge, all the properties and theo-

rems formally stated in this paper are new. This paper

is an extended version of [4].

1 Related works

This section positions the proposed approach with re-

spect to what has been done in various different fields.

When reading the paper for the first time, it can be

skipped. Readers with a background in classification

will be interested in section 1.1, those with a back-

ground in hierarchical image clustering section 1.2, and

those with a background in mathematical morphology
by section 1.3.

1.1 Hierarchical clustering

From its beginning in image processing, hierarchical

segmentation has been thought of as a particular in-
stance of hierarchical classification [5]. One of the fun-

damental theorems for hierarchical clustering states that

there exists a one-to-one correspondence between the

set of indexed hierarchical classification and a particu-
lar subset of dissimilarity measures called ultrametric

distances; This theorem is generally attributed to John-

son [6], Jardine et al. [7] and Benzécri [5]. Since then,
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numerous generalisations of that bijection theorem have

been proposed (see [2] for a recent review).

Theorem 13 (see below) is an extension to hierarchi-

cal segmentation of this fundamental hierarchical clus-

tering theorem. Note that the direction of this extension

is different from what is done classically in hierarchical
clustering. For example, E. Diday [8] looks for proper

dissimilarities that are compatible with the underlying

lattice. An ultrametric watershed F is not a proper dis-

similarity, i.e. F (x, y) = 0 does not imply that x = y

(see section 4). But F is an ultrametric distance (and
thus a proper dissimilarity) on the set of connected com-

ponents of {(x, y)|F (x, y) = 0}, those connected com-

ponents being the regions of a segmentation.

Another point of view on our extension is the follow-

ing: some authors assimilate classification and segmen-

tation. We advocate that there exists a fundamental
difference: in classification, we work on the complete

graph, i.e. the underlying connectivity of the image

(like the four-connectivity) is not used, and some points

can be put in the same class because for example, their
coordinates are correlated in some way with their color;

thus a class is not always connected for the underlying

graph. In the framework of segmentation, any region of

any level of a hierarchy of segmentations is connected

for the underlying graph. In other words, our approach
yields a constrained classification, the constraint being

the four-connectivity of the classes, or more generally

any connection defining a graph (for the notion of con-

nection and its links with segmentation, see [9, 10].)

1.2 Hierarchical segmentation

There exist many methods for building a hierarchical

segmentation [11], which can be divided in three classes:

bottom-up , top-down or split-and-merge. A recent re-

view of some of those approaches can be found in [3]. A
useful representation of hierarchical segmentations was

introduced in [12] under the name of saliency map. This

representation has been used (under several names) by

several authors, for example for visualisation purposes [1]
or for comparing hierarchies [13].

In this paper, we show that any saliency map is an
ultrametric watershed, and conversely.

1.3 Watersheds

For bottom-up approaches, a generic way to build a

hierarchical segmentation is to start from an initial seg-
mentation and progressively merge regions together [14].

Often, this initial segmentation is obtained through a

watershed [12, 15, 16]. See [17] for a recent review of

these notions in the context of mathematical morphol-

ogy [18].

Among many others [19], topological watershed [20]

is an original approach to watersheding that modifies

a map (e.g., a grayscale image) while preserving the

connectivity of each lower cross-section. It has been
proved [20, 21] that this approach is the only one that

preserves altitudes of the passes (named connection val-

ues in this paper) between regions of the segmenta-

tion. Pass altitudes are fundamental for hierarchical

schemes [12]. On the other hand, topological watersheds
may be thick. A study of the properties of different

kinds of graphs with respect to the thinness of water-

sheds can be found in [22, 23]. An useful framework

is that of edge-weighted graphs, where watersheds are
de facto thin (i.e. of thickness 1); furthermore, in that

framework, a subclass of topological watersheds satis-

fies both the drop of water principle and a property

of global optimality [24]. In this subclass of topological

watersheds, some of them can be seen as the limit, when
the power of the weights tends to infinity for some spe-

cific energy function, of classical algorithms like graph

cuts or random walkers [25, 26].

In this paper, we translate topological watersheds

from the framework of vertice-weigthed-graphs to the

one of edge-weighted graphs, and we identify ultra-
metric watersheds, a subclass of topological watersheds

that is convenient for hierarchical segmentation.

2 Segmentation on edges

This paper is settled in the framework of edge-weighted

graphs. Following the notations of [27], we present some
basic definitions to handle such kind of graphs.

2.1 Basic notions

We define a graph as a pair X = (V,E) where V is a

finite set and E is composed of unordered pairs of V ,

i.e., E is a subset of {{x, y} ⊆ V | x 6= y}. We denote
by |V | the cardinal of V , i.e, the number of elements

of V . Each element of V is called a vertex or a point

(of X), and each element of E is called an edge (of X).

If V 6= ∅, we say that X is non-empty.

As several graphs are considered in this paper, when-
ever this is necessary, we denote by V (X) and by E(X)

the vertex and edge set of a graph X .

A graph X is said complete if E = V (X)× V (X).

Let X be a graph. If u = {x, y} is an edge of X , we say
that x and y are adjacent (for X). Let π = 〈x0, . . . , xℓ〉
be an ordered sequence of vertices of X , π is a path

from x0 to xℓ in X (or in V ) if for any i ∈ [1, ℓ], xi is
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adjacent to xi−1. In this case, we say that x0 and xℓ

are linked for X . We say that X is connected if any

two vertices of X are linked for X .

Let X and Y be two graphs. If V (Y ) ⊆ V (X) and E(Y )

⊆ E(X), we say that Y is a subgraph of X and we
write Y ⊆ X . We say that Y is a connected component

of X , or simply a component of X , if Y is a connected

subgraph of X which is maximal for this property, i.e.,

for any connected graph Z, Y ⊆ Z ⊆ X implies Z = Y .
Let X be a graph, and let S ⊆ E(X). The graph in-

duced by S is the graph whose edge set is S and whose

vertex set is made of all points that belong to an edge

in S, i.e., ({x ∈ V (X) | ∃u ∈ S, x ∈ u}, S).

Important remark. Throughout this paper G =

(V,E) denotes a connected graph, and the letter V (resp.

E) will always refer to the vertex set (resp. the edge set)
of G. We will also assume that E 6= ∅.
Let S ⊂ E. In the following, when no confusion may

occur, the graph induced by S is also denoted by S.

Typically, in applications to image segmentation, V

is the set of picture elements (pixels) and E is any of the

usual adjacency relations, e.g., the 4- or 8-adjacency in

2D [28].

If S ⊂ E, we denote by S the complementary set

of S in E, i.e., S = E \ S.

2.2 Segmentation in edge-weigthed graphs

A deep insight on our work is that we are working with

edges and not with points: the minimal unit which we

want to modify is an edge. Indeed, what we need is a

discrete space in which we can draw the border of a seg-
mentation, so that we can represent that segmentation

by its border; in other words, we want to be able to

obtain the regions from their borders, and conversely.

In that context, a desirable property is that the regions

of the segmentation are the connected components of
the complement of the border.

As illustrated in Fig. 2.b, this is not possible to
achieve with the classical definition of a point-cut. In-

deed, recall that a partition of V is a collection (Vi) of

non-empty subsets of V such that any element of V is

exactly in one of these subsets, and that a point-cut is

the set of edges crossing a partition. Even if we add the
hypothesis that any (Vi, (Vi × Vi) ∩ E) is a connected

graph, a Vi can be reduced to an isolated vertice, as the

circled grey-point of Fig. 2.b. In that case, the comple-

ment of the point-cut, being a set of edges, does not
contain that isolated vertice. The correct space to work

with is the one of edges, and this motivates the follow-

ing definitions.

Definition 1 A set C ⊂ E is an (edge-)cut (of G) if

each edge of C is adjacent to two different nonempty

connected components of C. A graph S is called an seg-

mentation (of G) if E(S) is a cut. Any connected com-

ponent of a segmentation S is called a region (of S).

As mentioned above, the previous definitions of cut

and segmentation (illustrated on Fig. 2.c) are not the

usual ones. One can remark the complement of the com-
plement of a cut is the cut itself, and that any seg-

mentation gives a partition, the converse being false.

In particular, Prop. 2.i below states that there is no

isolated point in an segmentation. If we need an iso-

lated point x, it is always possible to replace x with an
edge {x′, y′}. An application of the framework of hierar-

chical segmentation to constrained connectivity (where

isolated points are present) is described in section 6.

It is interesting to state the definition of a segmen-
tation from the point of view of vertices of the graph.

A graph X is said to be spanning (for V ) if V (X) = V .

We denote by φ the map that associates, to anyX ⊂ G,

the graph φ(X) = {V (X), {{x, y} ∈ E|x ∈ V (X), y ∈
V (X)}}. We observe that φ(X) is maximal among all
subgraphs of G that are spanning for V (X), it is thus

a closing on the lattice of subgraphs of G [29]. We call

φ the edge-closing.

Property 2 A graph S ⊆ G = (V,E) is a segmenta-

tion of G if and only if

(i) The graph induced by E(S) is S;

(ii) S is spanning for V ;

(iii) for any connected component X of S, X = φ(X).

Proof Let S be a segmentation of G. Then S is a cut,
in other word, any edge v = {x, y} 6∈ E(S) is such that

x an y are in two different connected components of

S. As G is connected, that implies that S is spanning

for V . Moreover, E(S) is the set of all edges of S, and

as S is spanning for G, the graph induced by E(S) is
(V,E(S)) = S. Let X be a connected component of

S, suppose that there exists v = {x, y} ∈ E such that

x and y belong to X and v 6∈ E(X). But then v 6∈
E(S) and thus x and y are in two different connected
components of S, a contradiction.

Conversely, let S be a graph satisfying (i), (ii) and

(iii) and let v = {x, y} 6∈ E(S). As, by (ii), S is spanning

for V , assertion (iii) implies that x and y are in two

different connected components of E(S). Assertion (i)
implies that there is no isolated points in S, thus S is

a cut and thus S is a segmentation of G.⊓⊔

2.3 Binary watershed

Let X be a subgraph of G. We note X + u = (V (X) ∪
u,E(X) ∪ {u}). In other words, X + u is the graph
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(a) (b) (c)

Fig. 2 Illustration of segmentation and edge-cut. (a) A graph X. (b) A subgraph of X which is not a segmentation of X: the
circled grey-point is isolated, and if the point-cut D is the set of dotted-lines edges, D contains only two connected components,
instead of the expected three (see text). (c) An segmentation of X; the set C of dotted-lines edges is the associated edge-cut
of X.

whose vertice-set is composed by the points of V (X)

and the points of u, and whose edge-set is composed by

the edges of E(X) and u. An edge u ∈ E(X) is said

to be W-simple (for X) (see [20]) if X has the same
number of connected components as X + u.

A subgraph X ′ of G is a thickening (of X) if:

– X ′ = X , or if

– there exists a graph X ′′ which is a thickening of X

and there exists an edge u W-simple for X ′′ and

X ′ = X ′′ + u.

Thus, informally, a thickening X ′ of X is obtained by

iteratively adding to X a sequence of edges u1, . . . , un,

i.e. X ′ = X + u1 + . . . + un, with the constraint that
in the sequence X0 = X , Xn+1 = Xn + un+1, the edge

un+1 is W-simple for Xn.

A subgraph X of G such that there does not exist

a W-simple edge for X is called a binary watershed (of
G).

The following property is a consequence of the def-

initions of segmentation and binary watershed.

Property 3 A graph X ⊆ G = (V,E) is a segmenta-

tion of G if and only if X is a binary watershed of G

and if X is induced by E(X).

Proof If X is a segmentation, then E(X) is a cut; let

u ∈ E(X), u is adjacent to two different non-empty
connected components of E(X), in other word u is not

W-simple for X . Thus any segmentation is a binary

watershed.

Conversely, let X be a binary watershed, any u 6∈
E(X) is not W-simple for X (and thus u is adjacent to

two different connected components of X). If further-

more X is induced by E(X) then E(X) is a cut.⊓⊔

Thus, starting from a set of edgesX , a segmentation

is obtained by iterative thickening steps until idempo-

tence. The next section extends the binary watershed

approach to edge-weighted graphs.

3 Topological watershed

3.1 Edge-weighted graphs

We denote by F the set of all maps from E to R
+ Given

any F ∈ F , the positive numbers F (u) for u ∈ E are

called the weights and the pair (G,F ) an edge-weighted
graph. Whenever no confusion can occur, we will denote

the edge-weighted graph (G,F ) by F .

For applications to image segmentation, we take for

weight F (u), where u = {x, y} is an edge between two

pixels x and y, a dissimilarity measure between x and y

(e.g., F (u) equals the absolute difference of intensity be-

tween x and y; see [30] for a more complete discussion

on different ways to set the map F for image segmen-

tation). Thus, we suppose that the salient contours are

located on the highest edges of (G,F ).

Let λ ∈ R
+ and F ∈ F , we define F [λ] = {v ∈

E | F (v) ≤ λ}. The graph (induced by) F [λ] is called a

(cross)-section of F . A connected component of a sec-

tion F [λ] is called a component of F (at level λ).

We define C(F ) as the set composed of all the pairs
[λ,C], where λ ∈ R

+ and C is a component of the graph

F [λ]. We call altitude of [λ,C] the number λ. We note

that one can reconstruct F from C(F ); more precisely,

we have:

F (v) = min{λ | [λ,C] ∈ C(F ), v ∈ E(C)} (1)
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For any component C of F , we set h(C) = min{λ | [λ,C]

∈ C(F )}. We define C⋆(F ) as the set composed by all

[h(C), C] where C is a component of F . The set C⋆(F ),

called the component tree of F [31,32], is a finite subset

of C(F ) that is widely used in practice for image filter-
ing. Note that the previous equation (1) also holds for

C⋆(F ):

F (v) = min{λ | [λ,C] ∈ C⋆(F ), v ∈ E(C)} (2)

We will make use of the component tree in the proof of
Pr. 12.

A (regional) minimum of F is a componentX of the

graph F [λ] such that for all λ1 < λ, F [λ1]∩E(X) = ∅.
We remark that a minimum of F is a subgraph of G

and not a subset of vertices of G; we also remark that

any minimum X of F is such that |V (X)| > 1.

We denote by M(F ) the graph whose vertex set and
edge set are, respectively, the union of the vertex sets

and edge sets of all minima of F . In Fig. 3, boxes are

drawn around each of the minimum ofM(F ). Note that

M(F ) is induced by E(M(F )). As a convenient nota-

tion, and when no confusion can occur, we will some-
times write X ∈ M(F ) if X is a connected component

of M(F ).

3.2 Topological watersheds on edge-weighted graphs

In that section, we extend the definition of topological

watershed [20] to edge-weighted graphs, and we give

an original characterization of topological watersheds
in that framework (Th. 7).

Let F ∈ F . An edge u such that F (u) = λ is said to

be W-destructible (for F ) with lowest value λ0 if there

exists λ0 such that, for all λ1, λ0 < λ1 ≤ λ, u is W-

simple for F [λ1] and if u is not W-simple for F [λ0].

A topological watershed (on G) is a map that con-

tains no W-destructible edges.

An illustration of a topological watershed can be

found in Fig. 3.

A practical way to obtain a topological watershed
from any given map is to apply a topological thinning,

that, informally, consists in lowering W-destructible ed-

ges. More precisely, a map F ′ is a topological thinning

(of F ) if:

– F ′ = F , or if

– there exists a map F ′′ which is a topological thin-

ning of F and there exists an edge u W-destructible

for F ′′ with lowest value λ such that ∀v 6= u, F ′(v) =

F ′′(v) and F ′(v) = λ0, with λ ≤ λ0 < F ′′(v).

A characterization of a W-destructible edge is pro-

vided through the connection value. The connection

value between x ∈ V and y ∈ V is the number

F (x, y) = min{λ | [λ,C] ∈ C(F ), x ∈ V (C), y ∈ V (C)}

(3)

In other words, F (x, y) is the altitude of the lowest

element [λ,C] of C(F ) such that x and y belong to C

(rule of the least common ancestor).

In Fig. 3.a and Fig. 3.b, it can be seen that the

connection value between the points m and p is 6, that
the one between m and d is 6, and that the one between

p and d is 5.

The connection value is a practical way to know if

an edge is W-destructible. The following property is a
translation of prop. 2 in [33] to the framework of edge-

weighted graphs.

Property 4 (Prop. 2 in [33]) Let F ∈ F . An edge

v = {x, y} ∈ E is W-destructible for F with lowest

value λ if and only if λ = F (x, y) < F (v).

Two points x and y are separated (for F ) if F (x, y) >

max{λ1, λ2}, where λ1 (resp. λ2) is the altitude of the

lowest element [λ1, c1] (resp. [λ2, c2]) of C(F ) such that
x ∈ c1 (resp. y ∈ c2). The points x and y are λ-separated

(for F ) if they are separated and λ = F (x, y).

The map F ′ is a separation of F if, whenever two

points are λ-separated for F , they are λ-separated for
F ′.

IfX and Y are two subgraphs ofG, we set F (X,Y ) =

min{F (x, y) | x ∈ X, y ∈ Y }.

Theorem 5 (Restriction to minima [20]) Let F ′ ≤
F be two elements of F . The map F ′ is a separation of

F if and only if, for all distinct minima X and Y of

M(F ), we have F ′(X,Y ) = F (X,Y ).

A graph X is flat (for F ) if for all u, v ∈ E(X),

F (u) = F (v). If X is flat, the altitude of X is the num-

ber F (X) such that F (X) = F (v) for any v ∈ E(X).

We say that F ′ is a strong separation of F if F ′ is
a separation of F and if, for each X ′ ∈ M(F ′), there

exists X ∈ M(F ) such that X ⊆ X ′ and F (X) =

F (X ′).

Theorem 6 (strong separation [20]) Let F and F ′

in F with F ′ ≤ F . Then F ′ is a topological thinning of

F if and only if F ′ is a strong separation of F .

In other words, topological thinnings are the only way

to obtain a watershed that preserves connection values.

In the framework of edge-weighted graphs, topolog-

ical watersheds allows for a simple characterization.

Theorem 7 A map F is a topological watershed if and

only if:

(i) M(F ) is a segmentation of G;
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Fig. 3 Illustration of topological watershed. (a) An edge-weighted graph F . (b) A topological watershed of F . The minima of
(a) are ({m, i}), ({p, l}), ({g, h}, {c, d}, {g, c}, {h, d}). A box is drawn around each one of the minimum in (a) and (b).

(ii) for any edge v = {x, y}, if there exist X and Y in
M(F ), X 6= Y , such that x ∈ V (X) and y ∈ V (Y ),

then F (v) = F (X,Y ).

Proof Let F be a topological watershed. Thus there

does not exist any edge W-destructible for F .

– Suppose that M(F ) is not a segmentation of G.

That means that there exists an edge u = {x, y} ∈
E(M(F )) such that x and y belongs to the same

connected componentX ofM(F ). That implies that

F (u) > F (X) = F (x, y). By Pr. 4, that implies that

the edge u is W-destructible for F , a contradiction.

Thus M(F ) is a segmentation of G.
– As F is a topological watershed, we have by Pr. 4

that for any v = {x, y} ∈ E, F (x, y) = F (v). In

particular, if there exist X and Y in M(F ), X 6= Y ,

such that x ∈ V (X) and y ∈ V (Y ), then F (v) =
F (X,Y ).

Conversely, suppose that F satisfies (i) and (ii). By
Pr. 4, for any edge v = {x, y} ∈ E(M(F )), F (v) =

F (x, y) = F (X), and thus M(F ) does not contain any

edge W-destructible for F . As, by (i), M(F ) is a seg-

mentation, any edge v 6∈ E(M(F )) satisfies (ii). By

Pr. 4, such an edge v is not W-destructible. Thus F

contains no W-destructible edge and is a topological

watershed. ⊓⊔

Note that if F is a topological watershed, then for any

edge v = {x, y} such that there exists X ∈ M(F ) with

x ∈ V (X) and y ∈ V (X), we have F (v) = F (X).

4 Hierarchies and ultrametric distances

Let Ω be a finite set. A hierarchy H on Ω is a set of

parts of Ω such that

(i) Ω ∈ H

(ii) for every ω ∈ Ω, {ω} ∈ H

(iii) for each pair (h, h′) ∈ H2, h ∩ h′ 6= ∅ =⇒ h ⊂ h′

or h′ ⊂ h.

The (iii) can be expressed by saying that two elements

of a hierarchy are either disjoint or nested.

An indexed hierarchy on Ω is a pair (H,µ), where

H denotes a given hierarchy on Ω and µ is a positive

function, defined on H and satisfying the following con-
ditions:

(i) µ(h) = 0 if and only if h is reduced to a singleton

of Ω;

(ii) if h ⊂ h′, then µ(h) < µ(h′).

(a) Hierarchy

λ4

λ1

λ2

λ3

(b) Indexed hierarchy

Fig. 4 Hierarchical trees. We have λ1 < λ3 < λ4 and λ2 < λ4.

Hierarchy are usually represented using a special

type of tree called dendrograms (Fig. 4). The leafs of
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the tree are the data that are to be classified, while the

branching point (the junctions) are the agglomeration

of all the data that are below that point. In that sense,

one can see that, for a given h, µ(h) corresponds to the

“level” of aggregation, where the elements of h have
been aggregated for the first time.

Recall that a dissimilarity on Ω is a map d from
the Cartesian product Ω ×Ω to the set R of real num-

bers such that: d(ω1, ω2) = d(ω2, ω1), d(ω1, ω1) = 0 and

d(ω1, ω2) ≥ 0 for all ω1, ω2, ω3 ∈ Ω. The dissimilarity

d is said to be proper whenever d(ω1, ω2) = 0 implies

ω1 = ω2.

A distance d (on Ω) is a proper dissimilarity that

obeys the triangular inequality d(ω1, ω2) ≤ d(ω1, ω3) +

d(ω3, ω2) where ω1, ω2 and ω3 are any three points of
the space.

The ultrametric inequality [34] is stronger than the
triangular inequality. An ultrametric distance (on Ω) is

a proper dissimilarity such that, for all ω1, ω2, ω3 ∈ Ω,

d(ω1, ω2) ≤ max(d(ω1, ω3), d(ω2, ω3))

Note that any given partition (Ωi) of the set Ω in-

duces a large number of trivial ultrametric distances:

d(ω1, ω1) = 0, d(ω1, ω2) = 1 if ω1 ∈ Ωi, ω2 ∈ Ωj , i 6= j,

and d(ω1, ω2) = a if i = j, 0 < a < 1. The general
connection between indexed hierarchies and ultramet-

ric distances goes back to Benzécri [5] and Johnson [6].

They proved there is a bijection between indexed hier-

archies and ultrametric distances, both defined on the

same set. Indeed, associated with each indexed hierar-
chy (H,µ) on Ω is the following ultrametric distance:

d(ω1, ω2) = min{µ(h) | h ∈ H,ω1 ∈ h, ω2 ∈ h}. (4)

In other words, the distance d(ω1, ω2) between two ele-
ments ω1 and ω2 in Ω is given by the smallest element

in H which contains both ω1 and ω2. Conversely, each

ultrametric distance d is associated with one and only

one indexed hierarchy.

Observe the similarity between Eq. 4 and Eq. 3.

Indeed, connection value is an ultrametric distance on

V whenever F > 0. More precisely, we can state the
following property, whose proof is a simple consequence

of Eq.4 and Eq. 3.

Property 8 Let F ∈ F . Then F (X,Y ) is an ultra-

metric distance on M(F ). If furthemore, F > 0, then

F (x, y) is an ultrametric distance on V .

Let Ψ be the application that associates to any F ∈
F the map Ψ(F ) such that for any edge {x, y} ∈ E,

Ψ(F )({x, y}) = F (x, y). It is straightforward to see
that Ψ(F ) ≤ F , that Ψ(Ψ(F )) = Ψ(F ) and that if

F ′ ≤ F , Ψ(F ′) ≤ Ψ(F ). Thus Ψ is an opening on

the lattice (F ,≤) [35]. We observe that the subset of

strictly positive maps that are defined on the complete

graph (V, V × V ) and that are open with respect to Ψ

is the set of ultrametric distances on V . The mapping

Ψ is known under several names, including “subdomi-

nant ultrametric” and “ultrametric opening”. It is well
known that Ψ is associated to the simplest method for

hierarchical classification called single linkage cluster-

ing [7, 36], closely related to Kruskal’s algorithm [37]

for computing a minimum spanning tree.
Thanks to Th. 7, we observe that if F is a topologi-

cal watershed, then Ψ(F ) = F . However, an ultrametric

distance d may have plateaus, and thus the weighted

complete graph (V, V ×V, d) is not always a topological

watershed. Nevertheless, those results underline that
topological watersheds are related to hierarchical clas-

sification, but not yet to hierarchical segmentation; the

study of such relations is the subject of the rest of the

paper.

5 Hierarchical segmentations, saliency and

ultrametric watersheds

Informally, a hierarchical segmentation is a hierarchy of

connected regions. However, in our framework, if a seg-

mentation induces a partition, the converse is not true

(see Pr. 2); thus, as the union of two disjoint connected
subgraphs of G is not a connected subgraph of G, the

formal definition is slightly more involved.

A hierarchical segmentation (on G) is an indexed hi-

erarchy (H,µ) on the set of regions of a segmentation S

of G, such that for any h ∈ H , φ(∪X∈hX) is connected
(φ being the edge-closing defined in section 2).

For any λ ≥ 0, we denote by H [λ] the graph in-

duced by {φ(∪X∈hX)|h ∈ H,µ(h) ≤ λ}. The following

property is an easy consequence of the definition of a
hierarchical segmentation.

Property 9 Let (H,µ) be a hierarchical segmentation.

Then for any λ ≥ 0, the graph H [λ] is a segmentation

of G.

Proof Let (H,µ) be a hierarchical segmentation, and

let λ ≥ 0. Suppose that H [λ] is not a segmentation, i.e.

that H [λ] is not a cut. Then there exists a connected
component X of H [λ] and v = {x, y} ∈ H [λ] such that

x ∈ X and y ∈ X . That implies that φ(X) 6= X , a

contradiction with the definition of a hierarchical seg-

mentation. ⊓⊔

Prop. 8 implies that the connection value defines a

hierarchy on the set of minima of F . If F is a topological
watershed, then by Th. 7, M(F ) is a segmentation of

G, and thus from any topological watershed, one can

infer a hierarchical segmentation. However, F [λ] is not
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always a segmentation: if there exists a minimum X of

F such that F (X) = λ0 > 0, for any λ1 < λ0, F [λ1]

contains at least two connected components X1 and

X2 such that |V (X1)| = |V (X2)| = 1. Note that the

value of F on the minima of F is not related to the
position of the divide nor to the associated hierarchy of

minima/segmentations. This leads us to introduce the

following definition.

Definition 10 A map F ∈ F is an ultrametric water-

shed if F is a topological watershed, and if furthemore,

for any X ∈ M(F ), F (X) = 0.

Definition 10 directly yields to the nice following prop-

erty, illustrated in Fig. 5, that states that any level of an

ultrametric watershed is a segmentation and conversely.

Property 11 A map F is an ultrametric watershed if
and only if for all λ ≥ 0, F [λ] is a segmentation of G.

Proof Suppose that F is an ultrametric watershed, then

it is a topological watershed, and by Th. 7.(i), M(F )

is a segmentation of G. But as the value of F on its

minima is null, then any cross-section of F is a segmen-
tation of G.

Conversely, if for any λ ≥ 0, F [λ] is a segmen-

tation of G, then F contains no W-destructible edge
for F . Indeed, suppose that there exists an edge v W-

destructible for F , let λ = F (v), then v is W-simple for

F [λ]. In other words, adding v to F [λ] does not change

the number of connected components of F [λ]. This is

a contradiction with the definition of a segmentation.
Hence F is a topological watershed. Furthermore, as

F [λ] is a segmentation for any λ ≥ 0, the value of F on

its minima is null, hence F is an ultrametric watershed.

⊓⊔

By definition of a hierarchy, two elements of H are
either disjoint or nested. If furthermore (H,µ) is a hi-

erarchical segmentation, the graphs E(H [λ]) can be

stacked to form a map. We call saliency map [12] the

result of such a stacking, i.e. a saliency map is a map
F such that there exists (H,µ) a hierarchical segmen-

tation with F (v) = min{λ|v ∈ E(H [λ])}.

Property 12 A map F is a saliency map if and only
if F is an ultrametric watershed.

Proof If F is a saliency map, then there exists (H,µ) a

hierarchical segmentation such that F (v) = min{λ | v ∈
E(H(λ))}. But F [λ] = {v | F (v) ≤ λ} = {v | min{λ | v ∈
E(H [λ])} ≤ λ} = H [λ] and thus by Pr. 9, for any λ ≥ 0,

F [λ] is a segmentation. By Pr. 11, F is an ultrametric

watershed.

Conversely, let F be an ultrametric watershed, and

let C⋆(F ) be the component tree of F . We build the

pair (H,µ) in the following way: h ∈ H if and only if

there exists [λ,C] ∈ C⋆(F ) such that h = {Xi | Xi ∈
M(F ) and Xi ⊂ C}; in that case, we set µ(h) = λ.

Then (H,µ) is a hierarchical segmentation. Indeed,

let h and h′ two elements of H such that there exists

[λ,X ] and [λ′, Y ] in C⋆(F ) with h = {X0, . . . , Xp | Xi ∈
M(F ) and Xi ⊂ X} and with h′ = {Y0, . . . , Yn | Yi ∈
M(F ) and Yi ⊂ Y }.

– by Th. 7, M(F ) is a segmentation,

– we set λmax = max{F (v) | v ∈ E}, it easy to see

that [λmax, (V,E)] ∈ C⋆(F ), thus {∪X∈M(F ){X}} ∈
H ;

– any minimum X of F is such that [0, X ] belongs to

C⋆(F ), thus {X} ∈ H ;

– furthermore, h and h′ are either disjoint or nested:

– either disjoint: suppose that X ∩ Y = ∅, in that
case h and h′ are also disjoint;

– or nested: suppose thatX∩Y 6= ∅, then asX and

Y are two connected components of the cross-

sections of F , either X ⊂ Y or Y ⊂ X ; suppose
that X ⊂ Y ; by reordering the Xi and the Yi,

that means that Xi = Yi for i = 0, . . . , p, p < n.

In other words, h ⊂ h′.

– by construction, µ(h) = 0 if and only if there exists

X ∈ M(F ) such that h = {X};
– If h ⊂ h′, then µ(h) < µ(h′), because in that case,

X ⊂ Y and thus λ < λ′.

Thus (H,µ) is a indexed hierarchy on M(F ).

Furthermore, φ(∪Xi∈hXi) is connected: more pre-
cisely, as M(F ) is a segmentation, and as X is a con-

nected component of the cross-sections of F , we have

φ(∪Xi∈hXi) = X . Thus (H,µ) is a hierarchical segmen-

tation. ⊓⊔

The following theorem, a corrolary of Prop. 12, states

the equivalence between hierarchical segmentations and
ultrametric watersheds. It is the main result of this pa-

per.

Theorem 13 There exists a bijection between the set

of hierarchical segmentations on G and the set of ultra-

metric watersheds on G.

Proof By Pr. 12, any ultrametric watershed is a saliency
map, thus for any ultrametric watershed, there exists

an associated hierarchical segmentation.

Conversely, for any hierarchical segmentation, there

exists a unique saliency map, thus by Pr. 12, a unique
ultrametric watershed. ⊓⊔

Th. 13 states that any hierarchical segmentation can be

represented by an ultrametric watershed. Such a rep-

resentation can easily be built by stacking the border
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(a) Ultrametric watershed F
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(b) cross-section of F at level 5

Fig. 5 An example of an ultrametric watershed F and a cross-section of F . In (a), a box is drawn around each one of the
minima of F , and in (b), a box is drawn around each one of the connected components of the cross-section of F . Remark that
the minima of F , as well as any cross-section of F , form a segmentation of the graph.

of the regions of the hierarchy (see Pr. 9 and 12, but

also [1, 12, 13]). More interestingly, Th. 13 also states
that any ultrametric watershed yields a hierarchical seg-

mentation. As the definition of topological watershed is

constructive, this is an incentive to searching for algo-

rithmic schemes that directly compute the whole hier-
archy. An exemple of such an application of Th. 13 is

developped in section 6.

As there exists a one-to-one correspondence between

the set of indexed hierarchies and the set of ultramet-

ric distances, it is interesting to search if there exists
a similar property for the set of hierarchical segmenta-

tions. Let d be the ultrametric distance associated to

a hierarchical segmentation (H,µ). We call ultrametric

contour map (associated to (H,µ)) the map dE such
that:

1. for any edge v ∈ E(H [0]), then dE(v) = 0;

2. for any edge v = {x, y} ∈ E(H [0]), dE(v) = d(X,Y )

where X (resp. Y ) is the connected component of
H [0] that contains x (resp. y).

Property 14 A map F is an ultrametric watershed if

and only if F is the ultrametric contour map associated

to a hierarchical segmentation.

Proof Let F be an ultrametric watershed. By Pr. 8,

F (X,Y ) is an ultrametric distance onM(F ). By Pr. 11,

F is a saliency map, hence there exists a hierarchical

segmentation (H,µ) such that F (v) = min{λ | v ∈
E(H [λ])}. In particular,

1. for any edge v ∈ E(H [0]), then F (v) = 0;

2. for any edge v = {x, y} ∈ E(H [0]), F (v) = F (X,Y )

where X (resp. Y ) is the connected component of
H [0] that contains x (resp. y).

Hence F is an ultrametric contour map associated to a

hierarchical segmentation.

Conversely, let dE be an ultrametric contour map

associated to a hierarchical segmentation (H,µ). Then
by Th. 7, dE is a topological watershed. Indeed, as

H is a hierarchical segmentation, H [0] = M(dE) is

a segmentation of G, and furthermore for any edge

v = {x, y}, if there exist X and Y in M(dE), X 6= Y ,
such that x ∈ V (X) and y ∈ V (Y ), then dE(v) =

d(X,Y ) = dE(X,Y ).

Moreover, for any v ∈ M(dE), dE(v) = 0, hence dE
is an ultrametric watershed. ⊓⊔

6 How to use the ultrametric watershed in

practice: the example of constrained

connectivity

Let us illustrate the usefulness of the proposed frame-

work by providing an original way of revisiting con-

strained connectivity hierarchical segmentations [3], whi-
ch leads to efficient algorithms. This section is meant as

an illustration of our framework, and, although it is self-

sufficient, technical details can be somewhat difficult

to grasp for someone not familiar with the watershed-
based segmentation framework of mathematical mor-

phology [17]. We plan to provide more information in

an extended version of that section.
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In this section, we propose to compute an ultra-

metric watershed that corresponds to the constrained

connectivity hierarchy of a given image. We show that,

in the framework of edge-weighted segmentations, con-

strained connectivity can be thought as a classical mor-
phological scheme, that consists of:

– computing a gradient;

– filtering this gradient by attribute filtering;

– computing a watershed of the filtered gradient.

We first discuss how to represent hierarchical segmen-
tations, then give the formal definition of constrained

connectivity, and then we move on to using ultrametric

watersheds for computing such a hierarchy. In the last

part of the section, we will show some other examples

related to the classical watershed-based segmentation
schemes.

6.1 Representations of hierarchical segmentations

As we mentionned in section 2.2, one of the motiva-

tions of this work is to be able to imbed the hierarchi-

cal segmentation in a discrete space in a way that can
be represented. Until now, we have used the classical

representation of a graph for all of our examples.

For the purpose of visualisation, it is enough to rep-

resent the image by a grid of double resolution. For

example, with the usual four connectivity in 2D, each
pixel will be the center of a 3x3 neighborhood, and if

two pixels share an edge, the two corresponding neigh-

borhoods will share 3 elements corresponding to that

edge. The representation of an ultrametric watershed
with double resolution can be seen in Fig. 6.a.

Remark: A convenient interpretation of the doubling

of the resolution can be given in the framework of cubi-

cal complexes, that have been popularized in computer

vision by E. Khalimski [38], but can be found earlier
in the literature, originally in the work of P.S. Alexan-

droff [39, 40].

Intuitively, a cubical complexe can be seen as a set

of elements of various dimensions (cubes, squares, seg-
ments and points) with specific rules between those el-

ements. The traditional vision of a numerical image as

being composed of pixels (elementary squares) in 2D or

voxels (elementary cubes) in 3D leads to a natural link

between numerical images and complexes. The repre-
sentation of an ultrametric watershed in the Khalimski

grid can be seen in Fig. 6.b.

The framework of complexes is useful in the study

of topological properties [41]. It is indeed possible to
provide a formal treatment of watersheds in complexes,

which we will not do in this paper. The interested reader

can have a look at [42].

6.2 Constrained connectivity

This section is a reminder of P. Soille’s approach [3],
using the same notations.

Let f be an application from V to R, i.e. an image

with values on the points. For any set of points U ⊆ V ,

we set

Rf (U) = sup{f(x)− f(y)|x, y ∈ U}. (5)

The number Rf (U) is called the range of U (for f).

For any x ∈ V , and for any α ≥ 0, define [43] the
α-connected component α-CC(x) as the set:

α-CC(x) = {x} ∪ {y ∈ V | there exists a path

π = {x0 = x, . . . , xn = y},

n > 0, such that

Rf ({xi, xi+1}) ≤ α,

for all 0 ≤ i < n} (6)

An essential property of the α-connected compo-
nents of a point x is that they form an ordered sequence

(i.e a hierarchy) when increasing the value of α:

α-CC(x) ⊆ β-CC(x) (7)

whenever β ≥ α. An example of such a hierarchy is

given in Fig. 7.

We now define the (α, ω)-connected component of

an arbitrary point x as the largest α-connected compo-
nent of x whose range is lower that ω; more precisely,

(α, ω)-CC(x) = sup{β-CC(x) | β ≤ α and

Rf (β-CC(x)) ≤ ω} (8)

The (α, ω)-CCs also define a hierarchy, that is called
a constrained connectivity hierarchy. We have:

(α, ω)-CC(x) ⊆ (α′, ω′)-CC(x) (9)

whenever α′ ≥ α and ∀ω′ ≥ ω. In practice [3], we are

interested in this hierarchy for α = ω, i.e., for any x ∈ V

and any λ ≥ 0, we are looking for (λ, λ)-CC(x).

Thus, informally, a hierarchy of α-connected com-
ponents is given by connectivity relations constrain-

ing gray-level variations along connected paths; a con-

strained connectivity hierarchy is given by connectivity

relations constraining gray-level variations both along

connected paths and within entire connected compo-
nents.

An example of a constrained-connectivity hierarchy

is given in Fig. 8.
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(a) Ultrametric watershed F seen with double
resolution
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(b) Ultrametric watershed F seen in the Khal-
imski grid

Fig. 6 Two possible representations of the ultrametric watershed F of Fig. 5.a.
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Fig. 7 Example from [3] of a 7x7 image and its partitions into α-connected components for α ranging from 0 to 5. (a) 0-CCs.
(b) 1-CCs. (c) 2-CCs. (d) 3-CCs. (e) 4-CCs. (f) 5-CCs.

6.3 Ultrametric watershed for constrained connectivity

In that section, we show how to build a weighted graph

on which the ultrametric watershed corresponding to
the hierarchy of constrained connectivity can be com-

puted. Intuitively, this weighted graph can be seen as

the gradient of the original image. We compute an ul-

trametric watershed for the hierarchy of α-connected
components. We filter that watershed to obtain the

family of (α, ω)-connected components. We then show

how to directly compute the ultrametric watershed cor-

responding to the hierarchy of (α, ω)-connected compo-

nents.

Constrained connectivity is a hierarchy of flat zones

of f , in the sense where the 0-connected components of
f are the zones of f where the intensity of f does not

change. In a continuous world, such zones would be the

ones where the gradient is null, i.e. ∇f = 0. However,

the space we are working with is discrete, and a flat
zone of f can consist in a single point. In general, it

is not possible to compute a gradient on the points or

on the edges such that this gradient is null on the flat
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Fig. 8 Example from [3] of a 7x7 image and its partitions into (α, ω)-connected components using identical values for the
local and global range parameters ranging from 1 to 6. (a) (1, 1)-CCs. (b) (2, 2)-CCs. (c) (3, 3)-CCs. (d) (4, 4)-CCs. (e) (5,
5)-CCs. (f) (6, 6)-CCs.

zones. To compute a gradient on the edges such that the
gradient is null on the flat zones, we need to “double”

the graph, for example we can do that by doubling the

number of points of V and adding one edge between

each new point and the old one (see Fig. 9(b)).

1 2

3 4

(a)

1 2

1 2

3 4

3 4

1

1

2 2

0 0

0 0

(b)

Fig. 9 Doubling the graph. (a) Original graph with weights
f on the vertices. (b) Double graph, with weigths f on the
vertices and the gradient F on the edges (see text).

More precisely, if we denote the points of V by V =
{x0, . . . , xn}, we set V ′ = {x′

0, . . . , x
′
n} (with V ∩ V ′ =

∅), and E′ = {{xi, x
′
i} | 0 ≤ i ≤ n}. We then set

V1 = V ∪V ′ and E1 = E ∪E′. By construction, as G =

(V,E) is a connected graph, the graph G1 = (V1, E1) is
a connected graph.We also extend f to V ′, by setting,

for any x′ ∈ V ′, f(x′) = f(x), where {x, x′} ∈ E′.

Let (V1, E1, F ) be the weighted graph obtained from

f by setting, for any {x, y} ∈ E1, F ({x, y}) = |f(x) −
f(y)|. The map F can be seen as the “natural gradient”

of f [44]. It is easy to see that the flat zones of f , i.e.
the 0-connected components of f are (in bijection with)

the connected components of the set {v = {x, y} ∈
E1 | F ({x, y}) = 0}.

3 3 4 4

3 3 4 4

1 1 2 2

1 1 2 2
(a)

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

2 2 2 2 2 2 2

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0
(b)

Fig. 10 Doubling the graph as an image. (b) Doubling the
graph of Fig. 9.a. (b) The gradient of (a) (see text).

Let us note that it is also possible, for the purpose

of visualisation, to double the graph as an image, i.e.,

to multiply the size of the image by 2. On the graph of

Fig. 9.a, that gives the image of Fig. 10.a. Then the gra-
dient can be seen as an image (Fig. 10.b) as described

in section 6.1. This representation will be adopted in

all the subsequent figures of the paper.

Let W 1 be a topological watershed of F . From Th. 7

and Eq. 3, if W 1({x, y}) = λ, there exists a path π =
{x0 = x, . . . , xn = y} linking x to y such that the alti-

tude of any edge along π is below λ, i.e. we have, for

any 0 ≤ i < n, F ({xi, xi+1}) = |f(xi) − f(xi+1)| ≤ λ.
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1 3 8 7 8 8 2
2 1 9 8 8 9 1
1 0 4 1 1 2 5
1 1 9 3 4 2 6
3 2 7 9 9 1 1
1 0 8 4 9 6 7
0 2 9 3 8 5 9

(a) Original image

1 1 3 3 8 8 7 7 8 8 8 8 2 2
1 1 3 3 8 8 7 7 8 8 8 8 2 2
2 2 1 1 9 9 8 8 8 8 9 9 1 1
2 2 1 1 9 9 8 8 8 8 9 9 1 1
1 1 0 0 4 4 1 1 1 1 2 2 5 5
1 1 0 0 4 4 1 1 1 1 2 2 5 5
1 1 1 1 9 9 3 3 4 4 2 2 6 6
1 1 1 1 9 9 3 3 4 4 2 2 6 6
3 3 2 2 7 7 9 9 9 9 1 1 1 1
3 3 2 2 7 7 9 9 9 9 1 1 1 1
1 1 0 0 8 8 4 4 9 9 6 6 7 7
1 1 0 0 8 8 4 4 9 9 6 6 7 7
0 0 2 2 9 9 3 3 8 8 5 5 9 9
0 0 2 2 9 9 3 3 8 8 5 5 9 9

(b) Doubled image

0 0 0 2 0 0 0 5 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 6 0 0 0 0
0 0 0 2 0 0 0 5 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 6 0 0 0 0
0 0 0 2 0 0 0 5 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 6 0 0 0 0
1 1 1 2 2 2 2 8 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 8 1 1 1 1
0 0 0 1 0 0 0 8 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 8 0 0 0 0
0 0 0 1 0 0 0 8 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 8 0 0 0 0
0 0 0 1 0 0 0 8 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 8 0 0 0 0
1 1 1 1 1 1 1 8 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 8 4 4 4 4
0 0 0 1 0 0 0 4 0 0 0 3 0 0 0 0 0 0 0 1 0 0 0 3 0 0 0 0
0 0 0 1 0 0 0 4 0 0 0 3 0 0 0 0 0 0 0 1 0 0 0 3 0 0 0 0
0 0 0 1 0 0 0 4 0 0 0 3 0 0 0 0 0 0 0 1 0 0 0 3 0 0 0 0
0 0 0 1 1 1 1 8 5 5 5 6 2 2 2 3 3 3 3 3 0 0 0 4 1 1 1 1
0 0 0 0 0 0 0 8 0 0 0 6 0 0 0 1 0 0 0 2 0 0 0 4 0 0 0 0
0 0 0 0 0 0 0 8 0 0 0 6 0 0 0 1 0 0 0 2 0 0 0 4 0 0 0 0
0 0 0 0 0 0 0 8 0 0 0 6 0 0 0 1 0 0 0 2 0 0 0 4 0 0 0 0
2 2 2 2 1 1 1 8 2 2 2 6 6 6 6 6 5 5 5 8 1 1 1 5 5 5 5 5
0 0 0 1 0 0 0 5 0 0 0 2 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 5 0 0 0 2 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 5 0 0 0 2 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0
2 2 2 2 2 2 2 8 1 1 1 5 5 5 5 5 0 0 0 8 5 5 5 6 6 6 6 6
0 0 0 1 0 0 0 8 0 0 0 4 0 0 0 5 0 0 0 3 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 8 0 0 0 4 0 0 0 5 0 0 0 3 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 8 0 0 0 4 0 0 0 5 0 0 0 3 0 0 0 1 0 0 0 0
1 1 1 2 2 2 2 8 1 1 1 6 1 1 1 5 1 1 1 3 1 1 1 4 2 2 2 2
0 0 0 2 0 0 0 7 0 0 0 6 0 0 0 5 0 0 0 3 0 0 0 4 0 0 0 0
0 0 0 2 0 0 0 7 0 0 0 6 0 0 0 5 0 0 0 3 0 0 0 4 0 0 0 0
0 0 0 2 0 0 0 7 0 0 0 6 0 0 0 5 0 0 0 3 0 0 0 4 0 0 0 0
0 0 0 2 0 0 0 7 0 0 0 6 0 0 0 5 0 0 0 3 0 0 0 4 0 0 0 0

(c) Gradient

0 0 0 2 0 0 0 5 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 5 0 0 0 0
0 0 0 2 0 0 0 5 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 5 0 0 0 0
0 0 0 2 0 0 0 5 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 5 0 0 0 0
1 1 1 2 2 2 2 5 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 5 1 1 1 1
0 0 0 1 0 0 0 5 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 5 0 0 0 0
0 0 0 1 0 0 0 5 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 5 0 0 0 0
0 0 0 1 0 0 0 5 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 5 0 0 0 0
1 1 1 1 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4
0 0 0 1 0 0 0 4 0 0 0 3 0 0 0 0 0 0 0 1 0 0 0 3 0 0 0 0
0 0 0 1 0 0 0 4 0 0 0 3 0 0 0 0 0 0 0 1 0 0 0 3 0 0 0 0
0 0 0 1 0 0 0 4 0 0 0 3 0 0 0 0 0 0 0 1 0 0 0 3 0 0 0 0
0 0 0 1 1 1 1 5 5 5 5 5 2 2 2 2 2 2 2 2 0 0 0 3 1 1 1 1
0 0 0 0 0 0 0 5 0 0 0 5 0 0 0 1 0 0 0 2 0 0 0 3 0 0 0 0
0 0 0 0 0 0 0 5 0 0 0 5 0 0 0 1 0 0 0 2 0 0 0 3 0 0 0 0
0 0 0 0 0 0 0 5 0 0 0 5 0 0 0 1 0 0 0 2 0 0 0 3 0 0 0 0
1 1 1 1 1 1 1 5 2 2 2 5 5 5 5 5 5 5 5 5 1 1 1 3 3 3 3 3
0 0 0 1 0 0 0 5 0 0 0 2 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 5 0 0 0 2 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 5 0 0 0 2 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0
2 2 2 2 2 2 2 5 1 1 1 4 4 4 4 4 0 0 0 5 5 5 5 5 5 5 5 5
0 0 0 1 0 0 0 5 0 0 0 4 0 0 0 4 0 0 0 3 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 5 0 0 0 4 0 0 0 4 0 0 0 3 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 5 0 0 0 4 0 0 0 4 0 0 0 3 0 0 0 1 0 0 0 0
1 1 1 2 2 2 2 5 1 1 1 4 1 1 1 4 1 1 1 3 1 1 1 2 2 2 2 2
0 0 0 2 0 0 0 5 0 0 0 4 0 0 0 4 0 0 0 3 0 0 0 2 0 0 0 0
0 0 0 2 0 0 0 5 0 0 0 4 0 0 0 4 0 0 0 3 0 0 0 2 0 0 0 0
0 0 0 2 0 0 0 5 0 0 0 4 0 0 0 4 0 0 0 3 0 0 0 2 0 0 0 0
0 0 0 2 0 0 0 5 0 0 0 4 0 0 0 4 0 0 0 3 0 0 0 2 0 0 0 0

(d) Ultrametric watershed for the α-connectivity

0 0 0 3 0 0 0 9 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 9 0 0 0 0
0 0 0 3 0 0 0 9 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 9 0 0 0 0
0 0 0 3 0 0 0 9 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 9 0 0 0 0
3 3 3 3 3 3 3 9 2 2 2 2 2 2 2 2 0 0 0 2 2 2 2 9 1 1 1 1
0 0 0 3 0 0 0 9 0 0 0 2 0 0 0 0 0 0 0 2 0 0 0 9 0 0 0 0
0 0 0 3 0 0 0 9 0 0 0 2 0 0 0 0 0 0 0 2 0 0 0 9 0 0 0 0
0 0 0 3 0 0 0 9 0 0 0 2 0 0 0 0 0 0 0 2 0 0 0 9 0 0 0 0
3 3 3 3 3 3 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 6 6 6 6
0 0 0 3 0 0 0 6 0 0 0 5 0 0 0 0 0 0 0 1 0 0 0 5 0 0 0 0
0 0 0 3 0 0 0 6 0 0 0 5 0 0 0 0 0 0 0 1 0 0 0 5 0 0 0 0
0 0 0 3 0 0 0 6 0 0 0 5 0 0 0 0 0 0 0 1 0 0 0 5 0 0 0 0
0 0 0 3 3 3 3 9 9 9 9 9 3 3 3 3 3 3 3 3 0 0 0 5 1 1 1 1
0 0 0 0 0 0 0 9 0 0 0 9 0 0 0 1 0 0 0 3 0 0 0 5 0 0 0 0
0 0 0 0 0 0 0 9 0 0 0 9 0 0 0 1 0 0 0 3 0 0 0 5 0 0 0 0
0 0 0 0 0 0 0 9 0 0 0 9 0 0 0 1 0 0 0 3 0 0 0 5 0 0 0 0
3 3 3 3 3 3 3 9 2 2 2 9 9 9 9 9 9 9 9 9 1 1 1 5 5 5 5 5
0 0 0 3 0 0 0 9 0 0 0 2 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 9 0 0 0 2 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 9 0 0 0 2 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0
3 3 3 3 3 3 3 9 2 2 2 6 6 6 6 6 0 0 0 9 9 9 9 9 9 9 9 9
0 0 0 1 0 0 0 9 0 0 0 6 0 0 0 6 0 0 0 4 0 0 0 2 0 0 0 0
0 0 0 1 0 0 0 9 0 0 0 6 0 0 0 6 0 0 0 4 0 0 0 2 0 0 0 0
0 0 0 1 0 0 0 9 0 0 0 6 0 0 0 6 0 0 0 4 0 0 0 2 0 0 0 0
1 1 1 3 3 3 3 9 2 2 2 6 1 1 1 6 1 1 1 4 2 2 2 4 4 4 4 4
0 0 0 3 0 0 0 9 0 0 0 6 0 0 0 6 0 0 0 4 0 0 0 4 0 0 0 0
0 0 0 3 0 0 0 9 0 0 0 6 0 0 0 6 0 0 0 4 0 0 0 4 0 0 0 0
0 0 0 3 0 0 0 9 0 0 0 6 0 0 0 6 0 0 0 4 0 0 0 4 0 0 0 0
0 0 0 3 0 0 0 9 0 0 0 6 0 0 0 6 0 0 0 4 0 0 0 4 0 0 0 0

(e) Ultrametric watershed for the constrained connectivity

Fig. 11 Example of a constrained connectivity hierarchy. (a) Original image (the one of Fig. 7) from [3]. (b) Doubling of (a).
(c) Gradient of (b). (d) Topological watershed of the gradient, that is the ultrametric watershed W 1 for the α-connectivity
that. (e) Ultrametric watershed W 2 for the constrained connectivity. (see text)
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The following property, the proof of which is left to the

reader, states that the hierarchy of α-connected com-

ponents is given by W 1.

Property 15 We have

– W 1 is an ultrametric watershed;

– W 1 is uniquely defined (if W ′ is a topological wa-

tershed of F , then W ′ = W 1);

– let λ ≥ 0 and let X be a connected component of the
cross-section W 1[λ]; then for any x ∈ V (X) \ V ′,

λ-CC(x) = V (X) \ V ′.

Pr. 15 is illustrated on Fig. 11.d. Let us stress that

Fig. 11.d sums up in one image all the images of Fig. 7.

One can notice that Rf is increasing on 2V , i.e.
Rf (X) ⊂ Rf (Y ) whenever X ⊆ Y . Thus Rf is increas-

ing on C(W 1), and by removing the connected compo-

nents of C(W 1) that are below a threshold ω for Rf ,

we have an attribute filtering which is idempotent (the
values on the points do not change), thus it is a clos-

ing. More precisely, we denote by (Rλ)λ≥0) the family

of maps obtained by applying this closing on W 1 for

varying λ, i.e., for any λ ≥ 0 and any {x, y} ∈ E1, we

set

Rλ({x, y}) = min{λ′ | [λ′, C] ∈ C(W 1),

x ∈ V (C), y ∈ V (C),

Rf (V (C)) ≥ λ} (10)

In other words, the altitude for Rλ of the edge {x, y}
is the altitude of the lowest component of C(W 1) that

contains both x and y and such that the range of that

component is greater than λ.

The family (Rλ)λ≥0 allows us to retrieve the (α, ω)-

CCs of f : surprisingly, it can be shown that any Rλ

is a topological watershed, and thus M(Rλ) is a seg-

mentation from which it is easy to extract the (λ, λ)-
connected component of a point, as the minimum of

M(Rλ) that contains that point (See Pr. 16 below for

a more formal setting).

Moreover, one can directly compute the ultrametric

watershed associated to the hierarchy of (α, ω)-constrai-

ned connectivity. We set:

W 2({x, y}) = min{Rf(V (C)) | [λ,C] ∈ C(W 1),

x ∈ V (C),

y ∈ V (C)} (11)

In other words, the altitude for W 2 of the edge {x, y}
is the range of the lowest component of C(W 1) that
contains both x and y. One can remark that Eq. 11

corresponds to Eq. 8 for the framework of segmentation.

The following property, the proof of which is left to

the reader, states that the hierarchy of (α, ω)-connected

components is given by W 2.

Property 16 We have

– ∀λ ≥ 0, Rλ is a topological watershed;

– ∀λ ≥ 0, W 2[λ] = M(Rλ) ;

– W 2 is an ultrametric watershed;
– W 2 is uniquely defined;

– let λ ≥ 0 and let X be a connected component of the

cross-section W 2[λ]; then for any x ∈ V (X) \ V ′,

(λ, λ)-CC(x) = V (X) \ V ′.

Prop. 16, illustrated on Fig. 11.e, thus gives an ef-

ficient algorithm to compute the hierarchy of (α, ω)-

constrained connectivity. Indeed, Eq. 11 can be com-

puted in constant time [45] on C(W 1), which itself can
be computed in quasi-linear time [32]. Such an algo-

rithm is much faster than the one proposed in [3], that

computes only one level of the hierarchy.

Let us stress that for an algorithmic/implementation

point of view, it is not necessary in practice to double

the image. Furthermore, for an efficient computation of

the hierarchy, a minimum spanning tree or a compo-
nent tree of the gradient can also be used instead of

an ultrametric watershed, without changing the overall

theoretical complexity of the algorithm. But for visu-

alisation purpose, the ultrametric watershed is neces-

sary. Moreover, those tools can be combined; indeed,
one can compute a topological watershed on the graph

of a minimum spanning tree. In a forthcomming paper,

we will propose various data structures, including but

not limited to component tree and minimum spanning
tree, that allows an efficient computation of hierarchi-

cal segmentations. We will also study how to extend

Prop. 16 in order to compute any granulometry of op-

erators (strong hierarchies in the sense of [9]).

A example of the application of the properties of

this section to a real image is given in Fig. 12. Visual-

ising W 2 allows to assess some of the qualities of the

hierarchy of constrained connectivity. One can notice
in Fig. 12.c a large number of transition regions (small

undersirable regions that persist in the hierarchy), and

this problem is known [46]. As W 2 is an image, a num-

ber of classical morphological schemes (e.g., area fil-
tering that produces a hierarchy of regions classified

according to their size or area; see [17] for more de-

tails) can be used to remove those transition zones (see

Fig. 12.d for an example). Studying the usefulness of

such schemes is the subject of future research.

6.4 Links with other hierarchical schemes

As we have shown, and as stated by Th. 13, any hi-

erarchical scheme can be represented by and computed

through an ultrametric watershed. This is in particu-
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(a) Original image (b) W 1(logarithmic grey-scale)

(c) W 2 (d) Area-filtering ultrametric watershed

Fig. 12 Soille’s (α, ω)-constrained connectivity hierarchy. (a) Original image. (b) Ultrametric watershed W 1 for the α-
connectivity. (c) Ultrametric watershed W 2 for the constrained connectivity. (d) Ultrametric watersheds corresponding to
one of the possible hierarchies of area-filterings on W 2.

lar true for the classical watershed-based segmentation

algorithms.

Fig. 13 is an illustration of the application of the

framework developped in this paper to a classical hier-
archical segmentation scheme based on attribute open-

ing [12,17,31]. The attribute opening tends to produce

large plateaus where a watershed can be located any-

where; in particular, the contours at a given level of
the hierarchy can be choosen differently depending on

the filtering level, and one has to take care of indeed

producing a hierarchy. In contrast, the ultrametric wa-

tershed will always choose a contour that is present at

a lower level of the hierarchy.

Fig. 14 shows some of the differences between ap-

plying an ultrametric-watershed scheme and applying

a classical watershed-based segmentation scheme, e.g.

attribute opening followed by a watershed [15]. As wa-
tershed algorithms generally place watershed lines in

the middle of plateaus, the contours produced by the

classical watershed-based segmentation scheme do not

lead to a hierarchy, and the two schemes give quite dif-

ferent results.

(a) (b)

Fig. 14 Zoom on a comparison between two watersheds of
a filtered version of the image 13.a. Morphological filtering
tends to create large plateaus, and both watersheds (a) and
(b) are possible, but only (a) is a subset of a watershed of 13.a.
No hierarchical scheme will ever give a result as (b).
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(a) Original image (b) Ultrametric watershed (c) Cross section of (b)

Fig. 13 Example of ultrametric watershed. On (a), a box is drawn around the zoomed part used in Fig. 14

7 Conclusion

In this paper, we have shown (Th. 13) that any hier-
archical segmentation can be represented by an ultra-

metric watershed, and conversely that any ultrametric

watershed leads to a hierarchical segmentation. Th. 13

thus offers an alternative way of thinking hierarchical

segmentation that complete existing ones (ultramet-
ric distances, minimum spanning tree, . . .) We have

seen how to apply Th. 13 to directly compute the con-

strained connectivity hierachy as an ultrametric water-

shed, leading to a fast algorithm. An important research
direction is to provide a generalization of this scheme

for computing any hierachical segmentation.

As a step in this direction, future work will pro-

pose novel algorithms (based on the topological wa-
tershed algorithm [33]) to compute ultrametric water-

sheds, with proof of correctness. It is important to note

that most of the algorithms proposed in the literature

to compute saliency maps are not correct, often because

they rely on wrong connection values or because they
rely on thick watersheds where merging regions is diffi-

cult [22].

On a more theoretical level, this work can be pur-

sued in several directions.

– We will study lattices of watersheds [47] and will

bring to that framework recent approaches like scale-

sets [1] and other metric approaches to segmenta-

tion [13]. For example, scale-sets theory considers a
rather general formulation of the partitioning prob-

lem which involves minimizing a two-term-based en-

ergy, of the form λC+D, where D is a goodness-of-

fit term and C is a regularization term, and proposes
an algorithm to compute the hierarchical segmenta-

tion we obtain by varying the λ parameter. As in

the case of constrained connectivity (see section 6

above), we can hope that the topological watershed
algorithm [33] can be used on a specific energy func-

tion to directly obtain the hierarchy.

– Subdominant theory (mentionned at the end of sec-

tion 4) links hierarchical classification and optimi-
sation. In particular, the subdominant ultrametric

d′ of a dissimilarity d is the solution to the following

optimisation problem for p < ∞:

min{||d− d′||pp | d′ is an ultrametric distance

and d′ ≤ d} (12)

It is certainly of interest to search if topological

watersheds can be solutions of similar optimisation

problems.

– Several generalisations of hierarchical clustering have
been proposed in the literature [2]. An interesting

direction of research is to see how to extend in the

same way the topological watershed approach, for

example for allowing regions to overlap.

– Last, but not least, the links of hierarchical segmen-
tation with connective segmentation [9] have to be

studied.
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