Combinatorial Hopf algebras from renormalization - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2009

Combinatorial Hopf algebras from renormalization

Résumé

In this paper we describe the right-sided combinatorial Hopf structure of three Hopf algebras appearing in the context of renormalization in quantum field theory: the non-commutative version of the Faà di Bruno Hopf algebra, the non-commutative version of the charge renormalization Hopf algebra on planar binary trees for quantum electrodynamics, and the non-commutative version of the Pinter renormalization Hopf algebra on any bosonic field. We also describe two general ways to define the associative product in such Hopf algebras, the first one by recursion, and the second one by grafting and shuffling some decorated rooted trees.
Fichier principal
Vignette du fichier
dualCHA-v1.pdf (217.14 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00417946 , version 1 (17-09-2009)
hal-00417946 , version 2 (01-07-2010)

Identifiants

Citer

Christian Brouder, Alessandra Frabetti, Frederic Menous. Combinatorial Hopf algebras from renormalization. 2009. ⟨hal-00417946v1⟩

Collections

ICJ
584 Consultations
231 Téléchargements

Altmetric

Partager

More