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Abstract

In this paper we describe the right-sided combinatorial Hopf structure of three Hopf algebras

appearing in the context of renormalization in quantum field theory: the non-commutative version

of the Faà di Bruno Hopf algebra, the non-commutative version of the charge renormalization Hopf

algebra on planar binary trees for quantum electrodynamics, and the non-commutative version of the

Pinter renormalization Hopf algebra on any bosonic field.

We also describe two general ways to define the associative product in such Hopf algebras, the

first one by recursion, and the second one by grafting and shuffling some decorated rooted trees.

1 Introduction

In the paper [13], J.-L. Loday and M. Ronco gave the definition of a right-sided combinatorial Hopf
algebra (CHA) which includes the examples of Hopf algebras describing the renormalization in quantum
field theory. The toy example, which inspired the work in [13], is Kreimer’s Hopf algebra on rooted
trees introduced in [9]. In this paper, we describe the CHA structure of three other such examples: the
non-commutative version of the Faà di Bruno Hopf algebra given in [3], the non-commutative version of
the charge renormalization Hopf algebra on planar binary trees given in [1] for quantum electrodynamics,
and the non-commutative version of the Pinter renormalization Hopf algebra on any quantum fields, as
given in [4].

Since Loday and Ronco work in the context of cofree-coassociative CHAs, we describe our examples,
which are all free-associative CHAs, by considering their linear duals. A right-sided cofree-coassociative
CHA is completely determined by the brace structure on the set its primitive elements. Therefore, to
describe our examples, it will be sufficient to give their brace structure.

In the first section we fix the notation on right-sided cofree-coassociative CHAs and brace algebras
from [13]. We also give a recursive definition of the product and show how to construct it starting from
the one defined on decorated rooted trees, that is, the product defined on the right-sided CHA induced by
the free brace algebra over the space of decorations. Then we fix the notation for the dual Hopf algebras,
which are used in the sequel. Each example is then treated in a separate section.
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2 Combinatorial Hopf algebras from dual Hopf algebras

2.1 Right-sided combinatorial Hopf algebras

In this section we recall the definition and main properties of a right-sided combinatorial Hopf algebra
(r-s CHA), as given by J.-L. Loday and M. Ronco in [13], in the cofree-coassociative case.

A right-sided cofree-coassociative CHA is, up to an isomorphism, a tensor coalgebra T (R) = ⊕n≥0R
⊗n

with the deconcatenation coproduct, endowed with an associative product ⋆ which satisfies the right-sided
condition: for any p ≥ 0, the subspace T≥p(R) = ⊕n≥pR

⊗n is a right ideal of T (R), that is

T≥p(R) ⋆ T (R) ⊂ T≥p(R).

This condition is equivalent to demanding that the product ⋆ induces a right action of T (R) on the
quotient space T<p(R) = T (R)/T≥p(R), that is

T<p(R) ⋆ T (R) ⊂ T<p(R). (2.1)

Loday and Ronco proved that a cofree-coassociative CHA is right-sided if and only if the set of its
primitive elements R is a brace algebra, that is, it is endowed with a brace product { ; ..., } acting on
R ⊗ T (R) with value in R, satisfying the brace relation

{

{x; y1, . . . , yn}; z1, . . . , zm

}

=
∑

{

x; z1, . . . , {y1; zk1 , . . . , }, . . . , {yn; zkn
, . . .}, . . . , zm

}

, (2.2)

for any x, yi, zj ∈ R. The brace product restricted to R ⊗ R⊗q is also denoted by M1q, if one wishes
to specify the number of variables on the right, or to underline that it is a special case of a multibrace
product Mpq defined on any powers R⊗p ⊗ R⊗q.

The brace product can be found from the associative product ⋆ by projecting the result onto the space
R of co-generators. If we denote by π : T (R) −→ R the canonical projection, this means that

M1q(x; y1 · · · yq) = π
(

x ⋆ (y1 · · · yq)
)

,

for any x ∈ R and y1 · · · yq ∈ R⊗q, where we denote the tensor product in T (R) by the concatenation. In
particular, for any x ∈ R we have

M10(x; 1) ≡ M10(x) = π(x ⋆ 1) = x,

therefore M10 = Id on R.
Conversely, the product ⋆ in T (R) can be reconstructed from the brace product on R, using the

deconcatenation coproduct to recover T (R) from R. The resulting formula of Loday and Ronco for the
product is (cf. [13])

(x1 · · ·xn) ⋆ (y1 · · · ym) =
∑

k≥1

∑

p1+···+pk=n

p1,...,pk=0,1

∑

q1+···+qk=m

q1,...,qk≥0

[Mp1q1 · · ·Mpkqk
](x1 · · ·xn; y1 · · · ym), (2.3)

where each map Mpq is applied to a block of p generators x and q generators y, with the following
assumptions:

M00 = 0 and M01 = M10 = Id,

M0p = Mp0 = 0 for p > 1, (2.4)

Mpq = 0 for p > 1 and q 6= 0,

and where the operators M1q for q 6= 0 of course satisfy the brace relation (2.2).

Applying formula (2.3) requires some computations. Let us take the example of x ⋆ y. For k = 1 we
have p1 = q1 = 1 and the only term is M11. For k = 2 we have (p1, p2) = (1, 0) or (p1, p2) = (0, 1) and
(q1, q2) = (1, 0) or (q1, q2) = (0, 1). This gives us the four terms M11M00 +M10M01 +M01M10 +M00M11.
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Since M00 = 0, we have only two terms left M10M01 + M01M10. For k > 2, all the terms are zero
because each term contains a factor M00. In general, the terms with k > n + m are zero in the product
(x1 · · ·xn) ⋆ (y1 · · · ym). Therefore, using (2.4), we get

x ⋆ y = M11(x; y) + [M10M01](x; y) + [M01M10](x; y)

= M11(x; y) + M10(x)M01(y) + M01(y)M10(x) = M11(x; y) + xy + yx.

Similarly, for (xy) ⋆ z, we have two terms for k = 2: M11M10 + M10M11 and three terms for k = 3:
M01M10M10 + M10M01M10 + M10M10M01, so that

(xy) ⋆ z = xM11(y; z) + M11(x; z)y + zxy + xzy + xyz.

For x ⋆ (yz), we have one term for k = 1: M12, two terms for k = 2: M11M01 + M01M11 and three
terms for k = 3: M01M01M10 + M01M10M01 + M10M01M01, so that

x ⋆ (yz) = M12(x; yz) + yM11(x; z) + M11(x; y)z + yzx + yxz + xyz.

In particular then, formula (2.3) for n = 1 gives

x ⋆ (y1 · · · ym) =
m

∑

i=0

m−i
∑

q=0

y1 · · · yi M1q(x; yi+1 · · · yi+q) yi+q+1 · · · ym. (2.5)

2.2 Recursive definition of the product.

Formula (2.3) can be given in a recursive way. To do it, let us denote by M : R ⊗ T (R) −→ R the brace
product { ; , . . . , } induced on R by the associative product ⋆ on T (R), and let us denote by X, Y, Z...
the generic words in T (R).

Proposition 2.1 Given the brace product M on R, the ⋆ product on T (R) can be reconstructed in the
following recursive way. For any X, Y ∈ T (R), with X, Y /∈ T 0(R):

X ⋆ Y =
∑

X=X1X2

Y =Y 1Y 2

(X1 ⋆ Y 1)M(X2; Y 2) (2.6)

=
∑

X=X1X2

Y =Y 1Y 2

M(X1; Y 1)(X2 ⋆ Y 2)

=
∑

X=X1X2X3

Y =Y 1Y 2Y 3

(X1 ⋆ Y 1)M(X2, Y 2)(X3 ⋆ Y 3),

where the sums run over all possible factorisations of X and Y with respect to the concatenation.

Proof. With the assumptions (2.4) on M , formula (2.3) can be expressed as

X ⋆ Y =
∑

k≥1

∑

X=X1···Xk

Y =Y 1···Y k

M(X1; Y 1) · · ·M(Xk; Y k), (2.7)

where the sum runs other all the factorisations (for the concatenation) of X = X1 · · ·Xk and Y =
Y 1 · · ·Y k. Note that the factors can be in T 0(R) but the condition M(1; 1) = 0 ensures that the sum is
finite. It also ensures that formula (2.6) is recursive.

If we then use this formula to express the factor X1 ⋆Y 1 in line (2.6), we obtain the desired expression
for X ⋆ Y . �

In particular, if we expand the words X and Y of T (R) in terms of elements xi and yj of R, with the
notation of Section 2.1, formula (2.6) becomes

(x1 · · ·xn) ⋆ (y1 · · · ym) =
[

(x1 · · ·xn−1) ⋆ (y1 · · · ym)
]

xn +
[

(x1 · · ·xn) ⋆ (y1 · · · ym−1)
]

ym

+

m−1
∑

i=1

[

(x1 · · ·xn−1) ⋆ (y1 · · · yi)
]

M1m−i(xn; yi+1 · · · ym). (2.8)
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Corollary 2.2 The brace relation (2.2) is equivalent to the identity

M(M(X ; Y ); Z) = M(X ; Y ⋆ Z), (2.9)

for any X ∈ R and Y, Z ∈ T (R).

Proof. If we call X = x, Y = y1 · · · yn and Z = z1 · · · zm, the left hand-side of the brace relation (2.2) is
simply M(M(X ; Y ); Z). The right-hand side, instead, becomes

∑

k≥1

∑

Y =Y 1···Y k

Z=Z1···Zk

M(X ; M(Y 1; Z1) · · ·M(Y k; Zk)),

where we use the assumptions (2.4) on M . From (2.7) it then follows that the right-hand side is equal to
M(X ; Y ⋆ Z). �

Remark 2.3 The right-sided combinatorial Hopf algebras, as well as the shuffle and the quasishuffle Hopf
algebras, are examples of more general cofree-coassociative combinatorial Hopf algebras T (R) introduced
by Loday and Ronco, where R is a so-called multibrace algebra. See [13] and the references therein for
details. In all these examples, as well as in the general case, the product ⋆ on T (R) can be defined
recursively from the multibrace product on R. The expressions (2.7), (2.6) and (2.9), with X ∈ T (R),
are valid in the most general case as well as in all the examples.

2.3 Right-sided Hopf algebras and trees

Let T (R) be a right-sided CHA such that the brace algebra R is a finite dimensional or a graded vector
space. In the first part of this section we forget the brace structure on R and construct the free brace
algebra on R using planar rooted trees. In the second part we relate the free brace structure on R with
the original one, and deduce a way to describe the associative product ⋆ on T (R) starting from the one
defined on trees.

Let T denote the set of plane rooted trees and for any non-empty tree t denote by V (t) the set of its
vertices and by |t| the cardinality of V (t). If d is a map from V (t) to R⊗|t|, then the pair (t, d) is a plane
tree with decorations in R. For example, the following tree with 4 vertices is decorated by the given map
d:

d
−→

x

y u

v

For any t ∈ T , we denote by Rt the linear span of all the decorated trees of shape t, modulo the
obvious linear relations coming from R, such as:

x

y λ1u1 + λ2u2

v

= λ1

x

y u1

v

+ λ2

x

y u2

v

.

Then the vector space

RT =
⊕

t∈T

Rt

contains the decorated trees of any shape, and the elements of the tensor space T (RT ) are called decorated
forests. From now on, we denote by the concatenation the tensor product between trees, and we simply
denote by t a decorated tree, omitting the decoration.
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We now define the structure of a brace algebra on RT , and consequently that of a right-sided CHA
on T (RT ), using the results of section 2.2. Therefore, we endow T (RT ) with the free (deconcatenation)
coproduct and we suppose that the product ⋆ is defined through the brace product M on RT .

To define the brace product, consider, for any x ∈ R, the linear map

Bx
+ : T (RT ) −→ RT

which maps a forest f = t1 · · · tn into the tree t = Bx
+(f) obtained by joining the ordered trees t1, ..., tn

to a new root decorated by x. For instance

Bx
+











y u

v









=

x

y u

v

.

Any tree t can be written as Bx
+(f). If t is made only of the root, decorated by x, the forest f is the

formal unit of T (RT ), that is 1 ∈ (RT )0.

Theorem 2.4 Let M : RT ⊗T (RT ) −→ RT be the linear map defined on any decorated tree t = Bx
+(f1)

and any decorated forest f2 by

M(Bx
+(f1); f2) = Bx

+(f1 ⋆ f2), (2.10)

where ⋆ is the product induced by M on T (RT ) according to Eq. (2.7) and with the assumptions (2.4).
Then M is a brace product on RT , and consequently ⋆ is an associative product on T (RT ) which

makes it into a right-sided CHA.

Proof. Assuming conditions (2.4) on the maps Mpq, it suffices to show that M satisfies the brace iden-
tity (2.9), that is

M(M(t1; f2); f3) = M(t1; f2 ⋆ f3)

for any tree t1 and any forests f2, f3. If t1, f2, f3 have respectively n1, n2 and n3 vertices, we prove the
brace identity by induction on the total number of vertices n1 + n2 + n3.

Since t1 is a tree, it has at least one vertex (the root) and therefore n1+n2+n3 ≥ 1. If n1+n2+n3 = 1,
only t1 is a tree, namely the single root, and f2, f3 are scalars. Because 1 ⋆ 1 = 1 and M10 = M01 = Id,
both terms in the equality produce t1 and therefore coincide.

Now suppose that the brace identity holds for n1 + n2 + n3 ≤ n, for a given n ≥ 1. According
to the previous sections, this implies that the product ⋆ is associative up to the same number n of
vertices. (In fact, the associativity of ⋆ does not depend on the definition (2.10) of M and was proved
in general by Loday and Ronco.) Then consider a tree and two forests with a total number of vertices
n1 + n2 + n3 = n + 1. Using the definition of M and the associativity of ⋆ up to n, for t1 = Bx

+(f1) we
obtain

M(M(Bx
+(f1); f2); f3) = M(Bx

+(f1 ⋆ f2); f3)

= Bx
+((f1 ⋆ f2) ⋆ f3) (Recursion)

= Bx
+(f1 ⋆ (f2 ⋆ f3))

= M(Bx
+(f1); f2 ⋆ f3).

�

Lemma 2.5 The brace product M on RT can be expressed in terms of graftings of trees: if t ∈ RT and
s1 · · · sn ∈ T (RT ), then M(t; s1 · · · sn) is the sum of the terms obtained by grafting the trees s1, ...sn onto
the vertices of t, in all the possible ways which preserve the order of the si’s from left to right.

Similarly, the product ⋆ on T (RT ) is the sum of terms mixing all possible shuffles and all possible
graftings of the trees on the right-hand side onto the vertices of the trees on the left hand-side.
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Proof. We prove it by induction on the size of the forests, given by the total number of vertices. For this,
we need to treat at the same time M and ⋆, which is given by (2.6).

The induction starts with the first non-trivial operations:

M





x

;

y



 = Bx
+





y



 =

x

y

is the grafting of the second • on the first one. The claim is obtained because this is the only possible
grafting. Similarly, according to (2.6), the product

x

⋆

y

= M





x

;

y



 +





x

⋆ 1



M



1;

y



 +



1 ⋆

y



 M





x

; 1



 =

x

y

+

x y

+

y x

is exactly made of the only possible grafting and the two allowed shuffles.
Now suppose that M(t1; f2) is made of all possible ordered graftings of the trees composing the forest

f2 on the vertices of the tree t1, for t1 and f2 having a total number of vertices n1 + n2 ≤ n, for some
n ≥ 1. Similarly, suppose that f1 ⋆ f2 is made of the terms mixing all possible shuffles of the trees of f1

with those of f2, and of graftings of the trees of f2 over the vertices of those contained in f1, for f1 and
f2 having a total number of vertices n1 + n2 ≤ n.

Then, consider t1 and f2 with n1 + n2 = n + 1. Applying the definition (2.10) for t1 = Bx
+(f1), we

see that
M(Bx

+(f1); f2) = Bx
+(f1 ⋆ f2)

is the grafting of f1 ⋆ f2 onto the original root. The claim is then guaranteed by the inductive hypothesis
on f1 ⋆ f2.

Similarly, consider t1 and f2 with n1 + n2 = n + 1. Applying formula (2.6) we see that

f1 ⋆ f2 =
∑

f1=f′
1f′′

2
f2=f′

1
f′′
2

(f ′
1 ⋆ f ′

2)M(f ′′
1 ; f ′′

2 )

contains exactly all possible shuffles mixed with all possible graftings. This is guaranteed by the inductive
hypothesis on the factors f ′

1 ⋆ f ′
2 and M(f ′′

1 ; f ′′
2 ), and the fact that the sum runs over all decompositions

of f1 and f2 into two factors, including the trivial ones. �

Here are some examples of graftings and shuffles:

M











x

y

;

u v











=

x

u v y

+

x

u

y

v

+

x

u y v

+

x

y

u v

+

x

y

u

v

+

x

y u v

x

∗











u v

w









=

x u v

w

+

u x v

w

+

u v

w

x

+

x

u

v

w

+

x

u

v

w

+

u x

v

w

.

According to the results of Loday and Ronco, in particular paragraph 3.14 in [13], we can conclude
that

Corollary 2.6 The brace algebra RT , endowed with M , is the free brace algebra over R.
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Remark 2.7 The algebras RT and T (RT ), or their duals, or their non-planar and commutative versions,
appeared in really many recent works. We quote, but the list is surely not exhaustive, the works by
R. Grossman and R. G. Larson [7], F. Chapoton [5], L. Foissy [6], D. Guin et J.-M. Oudom [8], M. Ronco
[15] and J.-L. Loday and M. Ronco [13].

Now suppose that R itself is a brace algebra, and therefore T (R) is a right-sided CHA. We are going
to show that the ⋆ product defined in T (R) can be found by computing its lifting to T (RT ).

Let ι be the linear morphism from T (R) to T (RT ) defined by ι(1) = 1 and

ι(x1 · · ·xn) = Bx1
+ (1) · · ·Bxn

+ (1) =

x1

· · ·

xn

.

It is clear that ι preserves the concatenation in T (R) and T (RT ), and that it identifies R with R• ⊂ RT .
Note that the map ι does not preserve the brace product, in fact

M







x

;

y1

. . .

yq






=

x

y1 yq

6= ι(M(x; y1 · · · yq)) =

M(x; y1 · · · yq)

,

and therefore it does not preserve the product ⋆ in T (R) and T (RT ). We show that ι has an inverse map
which allows to compute the product ⋆ in T (R) starting from that in T (RT ).

Theorem 2.8 Let µ the linear morphism from T (RT ) to T (R) defined recursively by

1. µ(1) = 1,

2. µ(t1 . . . tn) = µ(t1) . . . µ(tn),

3. µ
(

Bx
+(s1 . . . sq)

)

= M1q

(

x; µ(s1 . . . sq)
)

.

Then, for any X, Y ∈ T (R), we have

X ⋆ Y = µ
(

ι(X) ⋆ ι(Y )
)

.

Proof. The proof is straightforward and relies on the recursive formulas in brace algebras and on the fact
that µ ◦ ι = IdT (R). If X = x1 · · ·xp and Y = y1 · · · yq then

X ⋆ Y =
∑

X=X1X2

Y =Y 1Y 2

(X1 ⋆ Y 1)M(X2; Y 2)

Since R is a brace algebra, either X2 = 1 or X2 = xp.

• If X2 = 1, then
M(1, Y 2) = Y 2 = µ(ι(Y 2)) = µ

(

M(1; ι(Y 2)
)

.

• If X2 = xp, then
M(xp, Y

2) = µ(B
xp

+ (ι(Y 2))) = µ
(

M(ι(xp); ι(Y
2))

)

.

Recursively, we get

X ⋆ Y =
∑

X=X1X2

Y =Y 1Y 2

(X1 ⋆ Y 1)M(X2; Y 2)

=
∑

X=X1X2

Y =Y 1Y 2

µ
(

ι(X1) ⋆ ι(Y 1)
)

µ
(

M(ι(X2); ι(Y 2))
)

= µ









∑

ι(X)=ι(X1)ι(X2)

ι(Y )=ι(Y 1)ι(Y 2)

(

ι(X1) ⋆ ι(Y 1)
)

M
(

ι(X2); ι(Y 2)
)









= µ
(

ι(X) ⋆ ι(Y )
)

.
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This result means that one can compute the ⋆ product in T (R) with the help of the ⋆ product in
T (RT ). This last product, given by shuffle and grafting of trees, is quite easy to handle. Let us illustrate
the application with an example:

x ⋆ (yz) = µ





x

⋆





y z









= µ











x y z

+

y x z

+

y z x

+

x

y

z

+

y x

z

+

x

y z











= xyz + yxz + yzx + M11(x; y)z + yM11(x; z) + M12(x; yz).

This computation can be compared with that made in section 2.1.
The algebra T (RT ) is the dual of Foissy’s Hopf algebra of decorated plane trees, cf. [6]. Foissy’s Hopf

algebra on rooted trees has a “universal property”, in the sense that it is endowed with the Hochschild
cocycle operator B+. Note that the property that we show for T (RT ) is not the dual property of that
one.

2.4 Right-sided CHAs from dual Hopf algebras

In the next sections we determine some right-sided CHAs T (R) from the dualization of given Hopf algebras
T (V ) where the vector space V is itself graded. In this case, the vector space R coincides with the dual
space V ∗, and we give a general tool to compute the brace structure on R starting from the coproduct
on T (V ). This tool is then used in the examples presented in the rest of the paper.

Let H be a graded Hopf algebra that is free as an algebra, finite dimensional in all degrees, and
with generators which are themselves graded. If we denote by V be the vector space spanned by all the
generators of H (infinite but countable many), the Hopf algebra can be given as H = T (V ) =

⊕∞
n=0 V ⊗n.

The dual Hopf algebra H∗ is defined as follows. As a vector space, it is the graded linear dual vector
space of H, that is H∗ = T (V ∗), where V ∗ is the graded linear dual vector space of V . If we denote
by {vn, n ≥ 1} a generic basis of V , that is a set of generators of H, the element v∗n dual to each vn is
defined by the pairing 〈v∗n|vm〉 = δn,m. Therefore, the dual of a generic basis element vn1 · · · vni

in H is
the element v∗n1

· · · v∗ni
in H∗ defined by the pairing

〈v∗n1
· · · v∗ni

|vm1 · · · vmj
〉 = δi,j〈v

∗
n1
|vm1〉 . . . 〈v∗ni

|vmi
〉.

As a coalgebra, H∗ inherits the coproduct ∆∗ dual to the product of H, that is, such that

〈

∆∗(v∗n1
· · · v∗ni

)|(vm1 · · · vmj
) ⊗ (vp1 · · · vpk

)
〉

=
〈

v∗n1
· · · v∗ni

|vm1 · · · vmj
vp1 · · · vpk

〉

.

Since H is free and unital as an algebra, H∗ is cofree and counital as a coalgebra, that is, ∆∗ is the
deconcatenation coproduct

∆∗(v∗n) = v∗n ⊗ 1 + 1 ⊗ v∗n,

∆∗(v∗n1
· · · v∗nk

) =

k
∑

i=0

v∗n1
· · · v∗ni

⊗ v∗ni+1
· · · v∗nk

,

and with the counit ε = 1∗. In this expression, 1 is not (yet) a unit, it denotes the generator of (V ∗)⊗0.
The set of primitive elements of H∗ is then obviously the dual V ∗ of the set of generators of H.

Finally, as an algebra, H∗ inherits the product ⋆ dual to the coproduct ∆ of H, that is, the product
such that

〈

(v∗n1
· · · v∗ni

) ⋆ (v∗m1
· · · v∗mj

), vp1 · · · vpk

〉

=
〈

v∗n1
· · · v∗ni

⊗ v∗m1
· · · v∗mj

, ∆(vp1 · · · vpk
)
〉

.
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The right-sided condition (2.1) for the Hopf algebra T (V ∗) is equivalent to require that the coproduct
∆ on T (V ) induces a right coaction of the Hopf algebra T (V ) on the subspace T≤p(V ) = ⊕n≤pV

⊗n, that
is

∆
(

T≤p(V )
)

⊂ T≤p(V ) ⊗ T (V ). (2.11)

Explicitly, this means that for any element a = vn1 · · · vnp
∈ V ⊗p, the coproduct ∆(a) =

∑

a(1) ⊗a(2) (in
Sweedler’s notation) produces terms with a(1) ∈ T≤p(V ). Since the coproduct is an algebra morphism,
and the product is free, it is sufficient that this property holds for p = 1: for any generator v ∈ V , the
coproduct ∆(v) =

∑

v(1) ⊗ v(2) produces terms with v(1) ∈ T≤1(V ) = K ⊕ V (cf. [13], Section 3.6).
Finally, the brace product on V ∗ is the projection of ⋆ onto V ∗. The projection π : T (V ∗) −→ V ∗, in

this case, is the map

π(a∗) =
∑

m

〈a∗|vm〉 v∗m,

for any a∗ ∈ T (V ∗). Therefore, the maps M1q : V ∗ ⊗ (V ∗)⊗q −→ V ∗ are simply given by

M1q(v
∗
n; a∗) =

∑

m

〈v∗n ⋆ a∗|vm〉 v∗m =
∑

m

〈v∗n ⊗ a∗|∆vm〉 v∗m. (2.12)

This sum if finite. In fact, let us denote by |a| [resp. |a∗|] the degree of the elements in the graded Hopf
algebra T (V ) [resp. T (V ∗)]. We recall that if |vn| denotes the degree of a generic basis element of V ,
then the degree of an element vn1 · · · vnp

∈ T (V ) is given by |vn1 · · · vnp
| = |vn1 | + · · · + |vnp

|. Then the
sum over m in Formula (2.12) is limited by the fact that |v∗m| = |vm| = |v∗n| + |a∗|.

3 The right-sided combinatorial structure of the Hopf algebra

(Hdif,nc)∗

Let Hdif,nc be the non-commutative Hopf algebra of formal diffeomorphisms, as defined in [16] or [3]
(where it was denoted by Hdif). It is the graded and connected Hopf algebra Q〈v1, v2, ...〉 = T (V ) on
the generators V = Span{v1, v2, ...} graded by |vn| = n, considered with the free (tensor) product, and
endowed with the coproduct

∆dif(vn) =

n
∑

m=0

vm ⊗
∑

k0,k1,...,km≥0

k0+k1+···+km=n−m

vk0vk1 . . . vkm
, (3.1)

where we set v0 = 1, and with the counit ε(vn) = δn,0. This Hopf algebra is a free-associative CHA, and
the formula (3.1) clearly says that the coproduct ∆dif satisfies the right-sided condition (2.11).

Let (Hdif,nc)∗ = T (V ∗) be its dual Hopf algebra, as described in section 2, with primitive elements in
V ∗ = Span{v∗1 , v∗2 , ...}. Then (Hdif,nc)∗ = T (V ∗) is a right-sided cofree-coassociative CHA, and moreover
a dendriform algebra, and V ∗ is a brace algebra.

Proposition 3.1 The brace product on V ∗ which induces the CHA structure on (Hdif,nc)∗ is given by

{v∗n; v∗m1
· · · v∗mq

} = M1q(v
∗
n; v∗m1

· · · v∗mq
) =

(

n + 1

q

)

v∗n+m1+···+mq
.

Proof. According to eq. (2.12), for any vn ∈ V and any a ∈ Hdif,nc, we have

M1q(v
∗
n; a∗) =

∞
∑

m=1

〈v∗n ⊗ a∗ | ∆difvm〉 v∗m.
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If we put v0 = 1, the coproduct of vm becomes [3]

∆difvm =

m
∑

k=0

vk ⊗ Q
(k)
m−k(v),

with

Q
(k)
m−k(v) =

k+1
∑

l=1

(

k + 1

l

)

∑

j1,...,jl>0

j1+···+jl=m−k

vj1 . . . vjl
.

Therefore,

M1q(v
∗
n; a∗) =

∞
∑

m=1

〈a∗ | Q
(n)
m−n(v)〉 v∗m.

We take a = vm1 . . . vmq
and we evaluate 〈v∗m1

. . . v∗mq
| Q

(n)
m−n(v)〉. From the definition of Q

(n)
m−n(v), we

must have l = q, j1 = m1, . . . , jq = mq. Therefore, m − n = j1 + · · · + jq = m1 + · · · + mq and

M1q(v
∗
n; v∗m1

. . . v∗mq
) =

(

n + 1

q

)

v∗n+m1+···+mq
.

�

4 The right-sided combinatorial structure of the Hopf algebra

(Hα,nc)∗

Let Y be the set of planar binary rooted trees, that is, planar graphs without loops and a preferred
external edge called the root. For instance,

, , , , , , , , .

For a tree t, we denote by |t| the number of its internal vertices. We denote by Yn the set of planar binary
trees with n internal vertices, so that Y =

⋃∞
n=0 Yn.

Let Hα,nc be the non-commutative lift of the Hopf algebra Hα introduced in [1, 2] to describe the
renormalization of the electric charge in the perturbative expansion of quantum electrodynamics based
on planar binary trees. It is the graded and connected Hopf algebra QY spanned by all planar binary
trees, endowed with the product over, cf. [11]: given two planar binary trees s, t 6= , the tree s over t,
denoted by s/t, is the tree obtained by grafting the root of s over the left-most leaf of t, that is,

s/t = t
s

.

This product is not commutative, and the root tree is the unit. Moreover, any tree can be decomposed

as the over product of subtrees which have nothing branched on their left-most leaf. If we set v(t) =
t

to denote these trees, the algebra Hα,nc is in fact isomorphic to the free algebra T (V ), where V =
Span{v(t), t ∈ Y }.

The coproduct ∆α : Hα,nc −→ Hα,nc ⊗ Hα,nc can be described in an elegant way in the form
proposed by P. Palacios in her Master Thesis [14]. For this, we need some notation. Let us denote by
∨ : Yn × Ym −→ Yn+m+1 the operation which grafts two trees on a new root, that is

s ∨ t =
s t

,

10



and call dressed comb the tree γ(t1, . . . , tk) recursively given by

γ(t) = t ∨ =
t

,

γ(t1, t2, . . . , tk) = t1 ∨ γ(t2, . . . , tk) =

. .
.

t1
t2

tk

.

Then, any tree t 6= can be written as t = γ(t1, t2, . . . , tk) for some suitable trees ti.
The coproduct ∆α is the unital algebra homomorphism defined on the generators as

∆α = ⊗ + ⊗ ,

∆αv(t) = ⊗ v(t) +
∑

v(γ(t1(1), t2(1), . . . , tk(1))) ⊗ t1(2)/t2(2)/ · · · /tk(2), (4.1)

where t = γ(t1, t2, . . . , tk) and
∑

ti(1) ⊗ ti(2) = ∆α(ti) is the Sweedler notation for the coproduct applied
to each subtree ti.

Finally, the counit ε : Hα,nc −→ Q is the unital algebra morphism with value ε(v(t)) = 0 on the
generators.

Let (Hα,nc)∗ = T (V ∗) be its dual Hopf algebra, with primitive elements given by V ∗ = Span{v(t∗), t ∈
Y }, where t∗ is the dual form of the tree t. Then (Hα,nc)∗ is a right-sided cofree-coassociatibe CHA, and
V ∗ is a brace algebra. We describe here its brace structure.

Theorem 4.1 The brace product M1q on V ∗ which induces the CHA structure on (Hdif,nc)∗ is given for
any q > 0 by

M1q(
∗; v(s1)

∗ · · · v(sq)
∗) = 0

and for any t 6= by

M1q(v(t)∗; v(s1)
∗ · · · v(sq)

∗) =
∑

v
(

γ(p∗(1), . . . , p
∗
(k))

)∗
,

where for t = γ(t1, . . . , tk) we set p∗ = (t∗1 · · · t
∗
l ) ⋆ (v(s1)

∗ · · · v(sq)
∗), and where we use the Sweedler

notation
∑

p∗(1) ⊗ p∗(2) ⊗ · · · ⊗ p∗(k) = (∆∗)k−1 p∗

for the deconcatenation coproduct ∆∗ applied k − 1 times to p∗.

Proof. According to Eq. (2.12), if we denote a∗ = v(s1)
∗ · · · v(sq)

∗, the brace product on V ∗ can be
computed as

M1q

(

v(t)∗; a∗
)

=
∑

u∈Y

〈

v(t)∗ ⋆ a∗|v(u)
〉

v(u)∗ =
∑

u∈Y

〈

v(t)∗ ⊗ a∗|∆αv(u)
〉

v(u)∗

=
〈

v(t)∗ ⊗ a∗|∆αv( )
〉

v( )∗ +
∑

u6=

〈

v(t)∗ ⊗ a∗|∆αv(u)
〉

v(u)∗. (4.2)

The first term gives

〈

v(t)∗ ⊗ a∗| ⊗ + ⊗
〉

∗ = 0,

because 〈a∗ | 〉 = 0 for q > 0, and 〈v(t)∗| 〉 = 0 for any t.
Then we suppose that u 6= and we evaluate the second term of (4.2) using the expression (4.1) for

∆αv(u). The first part gives

〈

v(t)∗ ⊗ a∗| ⊗ v(u)
〉

= 0
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for any choice of t.
The second part gives

〈

v(t)∗ ⊗ a∗|v(γ(u1(1), u2(1), . . . , ul(1))) ⊗ u1(2)/u2(2)/ · · · /ul(2)

〉

=
〈

v(t)∗|v(γ(u1(1), u2(1), . . . , ul(1)))
〉〈

a∗|u1(2)/u2(2)/ · · · /ul(2)

〉

, (4.3)

where we write u as γ(u1, ..., ul). The only primitive element v(t) which can not be of the form
v
(

γ(u1(1), u2(1), . . . , uk(1))
)

is v( ) = . In this case, the brace product is obviously

M1q

(

∗; a∗
)

= 0

for any q > 0. Finally let us consider the case t 6= . Then t = γ(t1, . . . , tk), and the first pairing of (4.3)
is non-zero only if

γ(u1(1), u2(1), . . . , ul(1)) = t = γ(t1, . . . , tk),

that is, if and only if l = k and

u1(1) = t1 , u2(1) = t2 , . . . , uk(1) = tk .

Therefore we have

M1q(v(t)∗; a∗) =
∑

u1,...,uk

〈

v(t)∗ | v
(

γ(u1(1), . . . , uk(1))
)〉〈

a∗ | u1(2)/ · · · /ul(2)

〉

v
(

γ(u1, . . . , uk)
)∗

=
∑

u1,...,uk

〈

t∗1 · · · t
∗
k | u1(1) · · ·uk(1)

〉〈

a∗ | u1(2)/ · · · /ul(2)

〉

v
(

γ(u1, . . . , uk)
)∗

=
∑

u1,...,uk

〈

t∗1 · · · t
∗
k ⊗ a∗ | ∆α(u1/ · · · /uk)

〉

v
(

γ(u1, . . . , uk)
)∗

=
∑

u1,...,uk

〈

(t∗1 · · · t
∗
k) ⋆ a∗ | u1/ · · · /uk

〉

v
(

γ(u1, . . . , uk)
)∗

.

Now, note that the deconcatenation coproduct ∆∗ in (Hα,nc)∗ is dual to the product / in Hα,nc, that is
〈

a∗ |b/c
〉

=
〈

∆∗(a∗) |b ⊗ c
〉

.

Let us call p∗ = (t∗1 · · · t
∗
k) ⋆ a∗. If we apply k − 1 times the deconcatenation coproduct ∆∗ to p∗, and we

use the Sweedler notation
∑

p∗(1) ⊗ p∗(2) ⊗ · · · ⊗ p∗(l) = (∆∗)k−1 p∗, we obtain the final result

M1q(v(t)∗; a∗) =
∑

u1,...,uk

∑

〈

p∗(1) ⊗ p∗(2) ⊗ · · · ⊗ p∗(k) | u1 ⊗ · · · ⊗ uk

〉

v
(

γ(u1, . . . , uk)
)∗

=
∑

v
(

γ(p∗(1), . . . , p
∗
(k))

)∗
.

�

Examples 4.2 The simplest example is given by M11(
∗
; ∗). We have = v( ) = v(γ( )), so

that k = 1 and t1 = . Therefore, p∗ = ∗ ⋆ ∗ = ∗ and

M11(
∗
; ∗) = v(γ( ∗)) = v(

∗
) =

∗

.

Similarly

M11(
∗
;

∗
) = v(γ(

∗
)) = v(

∗

) =

∗

.

Another simple example is given by M11(
∗

; ∗). We have = v(γ( )), so that k = 1 and t1 = .
Since for any t formula (2.12) gives

∗ ⋆ v(t)∗ = v(t)∗ ∗ + ∗v(t)∗ + M1q(
∗; v(t)∗) = v(t)∗ ∗ + ∗v(t)∗,
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because M1q(
∗; v(t)∗) = 0, we get p∗ = ∗ ⋆ ∗ = 2

∗
, and finally

M11(
∗

; ∗) = 2v(γ( ))∗ = 2v( )∗ = 2

∗

.

Now let us compute M11(
∗

; ∗). We have = v(γ( , )) so that k = 2 and t1 = t2 = . Since
∗ ∗ = ∗, we have p∗ = ∗ ⋆ ∗ = ∗ and therefore

M11(
∗

; ∗) = v(γ( , ))∗ + v(γ( , ))∗ = v( )∗ + v( )∗ =

∗

+

∗

.

Finally, let us compute an example of M1q with q > 1. We consider M12(
∗
; ∗ ∗). We have

= v(γ( )), so that k = 1 and t1 = . Therefore, p∗ = ∗ ⋆ ( ∗ ∗) =
∗

and

M12(
∗
; ∗ ∗) = v(γ( ))∗ = v( )∗ =

∗

.

Similarly

M12(
∗

; ∗ ∗) = v(γ( , ))∗ + v(γ( , ))∗ + v(γ( , ))∗

= v( )∗ + v( )∗ + v( )∗ =

∗

+

∗

+

∗

.

Remark 4.3 The brace structure can be described as follows:

M1q(v(t)∗; v(s1)
∗ · · · v(sq)

∗) =
∑

u

v(u)∗,

where the sum runs over any tree u obtained by branching the trees v(si) or any block v(si)/ · · · /v(sj)
on the \-leaves of t or inside the \-branches of t, by preserving the order from left to right of the trees
v(si) and of the \-branches of t.

5 The right-sided combinatorial structure of the Hopf algebra

T (T (B))∗

In the paper [4], C. Brouder and W. Schmitt introduced a non-commutative version H of a renormalization
Hopf algebra inspired by Pinter’s work on the Epstein-Glaser renormalization of quantum fields on the
configuration space. In this section we describe the brace structure on the set of primitive elements of
its dual Hopf algebra H∗.

As an algebra, H is the tensor algebra T (V ) on a set of generators V = T (B) = ⊕n≥1 B⊗n which is
the augmentation ideal of the tensor algebra over a given bialgebra B.

In order to apply the dualization procedure described in Section 2, we have to assume that the
bialgebra B admits at most a countable basis, and that this has been fixed. Let us denote by {xn} the
chosen basis of B. We also denote the product (in B) by a dot, namely x · y for any x, y ∈ B, and the
coproduct (in B) through the Sweedler notation δ(x) =

∑

x(1) ⊗ x(2).
In V = T (B), we denote the tensor products by tuples. Therefore the elements vn1,...,nk

= (xn1 , . . . , xnk
)

form a basis of V . On V we consider two coproducts. The first one is the extention of the coproduct on
B as an algebra morphism, namely

δ(x, y, . . . , z) =
∑

(x(1), y(1), . . . , z(1)) ⊗ (x(2), y(2), . . . , z(2)).

For a generic element v of V , we use the same Sweedler notation δ(v) =
∑

v(1) ⊗ v(2) as on B. The
second coproduct is the (reduced) deconcatenation coproduct

∆(x, y, . . . , z) = (x) ⊗ (y, . . . , z) + (x, y) ⊗ (. . . , z) + · · · + (x, y, . . . ) ⊗ (z).
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For this coproduct we use a modified Sweedler notation ∆(v) =
∑

v[1] ⊗ v[2].
Finally, in H = T (V ), we denote the tensor product by the concatenation. A generic element in H is

then of the form
a = uv · · ·w, where u, v, ..., w ∈ V , and for any elements a, b we denote their product (in T (V )) by

ab. Both coproducts δ and ∆ can be extended to H. The renormalization coproduct is then the algebra
homomorphism defined on a generator v ∈ V as

∆H(v) =

∞
∑

n=1

∑

(

µ(v[1](1)), . . . , µ(v[n](1))
)

⊗ v[1](2) · · · v[n](2), (5.1)

where
∑

v[1] ⊗ · · · ⊗ v[n] = ∆n−1(v) is the result of the deconcatenation applied n − 1 times to v, and
µ : T (B) −→ B, µ(x, y, ..., z) = x · y · . . . · z is the product of B extended to many factors.

Note that for any v ∈ V , the left tensor factor
(

µ(v[1](2)), . . . , µ(v[n](2))
)

of (5.1) belongs to V (in fact
it belongs to B⊗n), while the right factor v[1](1) · · · v[n](1) belongs to V ⊗n, therefore ∆H can not be defined
in V .

Note also that any monomial of elements of B in v ∈ V has finite length. Since the deconcatenation
of v vanishes if repeated more then the length of v, the sum over n in formula (5.1) is indeed finite. For
example, let us compute the simplest coproducts, for x, y and z in B:

∆H(x) =
∑

(x(1)) ⊗ (x(2)),

∆H(x, y) =
∑

(x(1), y(1)) ⊗ (x(2))(y(2)) +
∑

(x(1) · y(1)) ⊗ (x(2), y(2)),

∆H(x, y, z) =
∑

(x(1), y(1), z(1)) ⊗ (x(2))(y(2))(z(2)) +
∑

(x(1), y(1) · z(1)) ⊗ (x(2))(y(2), z(2))

+
∑

(x(1) · y(1), z(1)) ⊗ (x(2), y(2))(z(2)) +
∑

(x(1) · y(1) · z(1)) ⊗ (x(2), y(2), z(2)).

It is important to remark that, if v = (xn1 , . . . , xnl
), then ∆Hv is a sum of elements of B⊗k tensorized

by elements of T (B)⊗k, for k = 1 to l.

We now consider the dual Hopf algebra H∗ = T (V ∗), where V ∗ is the graded dual space T (B∗). Here
B∗ is the dual bialgebra of B, with basis elements x∗

m such that 〈x∗
m | xn〉 = δm,n. The product and

coproduct in B∗ are defined in terms of those of B by the standard duality

〈x∗ · y∗, z〉 = 〈x∗ ⊗ y∗, δz〉,

〈δx∗, y ⊗ z〉 = 〈x∗, y · z〉.

In V ∗ = T (B∗) we have (x1, . . . , xn)∗ = (x∗
1, . . . , x

∗
n) and therefore

〈

(x∗
1, . . . , x

∗
n) | (y1, . . . , ym)

〉

= δn,m〈x∗
1 | y1〉 · · · 〈x

∗
n | yn〉.

As we said, H∗ is a right-sided cofree-coassociative CHA, with deconcatenation coproduct ∆∗ and product
⋆. In this section we describe the brace product induced by ⋆ on the set V ∗ of primitive elements of H∗.

Theorem 5.1 The brace product M1q on V ∗ = T (B∗) which induces the CHA structure on H∗ is given
on the elements v∗ = (x1, ..., xn)∗ and u∗

1, ..., u
∗
q, for any q > 0, by

M1q(v
∗; u∗

1 · · ·u
∗
q) = 0, if n 6= q,

and, for n = q, by

M1q(v
∗; u∗

1 · · ·u
∗
q) =

(

x1
(1) · y

1
1 , ..., x1

(k1) · y
k1
1 , ..., xq

(1) · y
1
q , ..., xq

(kq) · y
kq
q

)∗
,

where u∗
i = (y1

i , ..., yki

i )∗, for i = 1, ..., q.
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Proof. If n 6= q, we already remarked in the expression (5.1) of the coproduct that no term can occur.
If n = q, consider v = (x1, ..., xq) ∈ B⊗q and u1, . . . , uq in B⊗k1 , . . . , B⊗kq , respectively. Set a =

u1 . . . uq ∈ V ⊗q. Then

M1q(v
∗; a∗) =

∑

k

∑

w∈B⊗k

〈v∗ ⊗ a∗ | ∆Hw〉w∗ =
∑

k

∑

w∈B⊗k

∑

〈v∗ ⊗ a∗ | w(1) ⊗ w(2)〉w
∗,

where the sums run over the generators w of B⊗k, that is, elements of the form w = (z1, . . . , zk) where
zi are generators of B, and where

∑

w(1) ⊗ w(2) = δ(w) denotes the coproduct of B.
As a consequence, the term corresponding to w appears in M1q(v

∗; a∗) if w(1) = v and w(2) = a. The
equality w(1) = v = (x1, . . . , xq) can be rewritten

z1
(1)

· . . . · zk1
(1)

= x1,

zk1+1
(1) · . . . · zk1+k2

(1) = x2,

. . .

z
k1+···+kq−1+1
(1) · . . . · zk

(1)
= xq.

The equality w(2) = a = u1 . . . uq can be rewritten

(z1
(2), . . . , z

k1
(2)) = u1,

(zk1+1
(2) , . . . , zk1+k2

(2) ) = u2,

. . .

(z
k1+···+kq−1+1
(2) , . . . , zk

(2)) = uq.

The second equality means that k = k1 + · · ·+kq. Because of this special form, each block can be treated
independently.

We consider the first block and we write k = k1 and u1 = (y1, . . . , yk). We have now, for the first
block and after putting x = x1,

X =
∑

z1,...,zk

〈(x∗) ⊗ (y1, . . . , yk)∗, (z1
(1)

· . . . · zk
(1)

) ⊗ (z1
(2)

, . . . , zk
(2)

)〉(z1, . . . , zk)∗

=
∑

z1,...,zk

〈(x∗), (z1
(1)

· . . . · zk
(1)

)〉〈(y1, . . . , yk)∗, (z1
(2)

, . . . , zk
(2)

)〉(z1, . . . , zk)∗

=
∑

z1,...,zk

〈x∗
(1)

, z1
(1)
〉 . . . 〈x∗

(k)
, zk

(1)
〉〈y∗

1 , z1
(2)
〉 . . . 〈y∗

k, zk
(2)
〉(z1, . . . , zk)∗,

where we used the fact that the coproduct in B∗ is the dual of the product in B. Now we use the fact
that the product in B∗ is the dual of the coproduct in B, and obtain

X =
∑

z1,...,zk

〈x∗
(1) · y

∗
1 , z

1〉 . . . 〈x∗
(k) · y

∗
k, zk〉(z1, . . . , zk)∗

=
∑

(x(1) · y1, . . . , x(k) · yk)∗.

The same is done for each block and we finally find

M1q(v
∗; a∗) = (x1

(1)
· y1

1 , . . . , x
1
(k1)

· y1
k1

, . . . , xq
(1) · y

q
1, . . . , x

q
(k) · y

q
kq

)∗.

�

Examples 5.2 Examples of M11 are:

M11

(

(x∗); (y∗)
)

= (x∗ · y∗),

M11

(

(x∗); (y∗, z∗)
)

=
∑

(x∗
(1) · y

∗, x∗
(2) · z

∗),

M11

(

(x∗); (y∗
1 , . . . , y∗

n)
)

= (x∗
(1) · y

∗
1 , . . . , x∗

(n) · y
∗
n).
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Examples of M12 are:

M12

(

(x, y)∗; (s)∗(t)∗
)

= (x · s, y · t)∗,

M12

(

(x, y)∗; (s)∗(t1, t2)
∗
)

=
∑

(x · s, y(1) · t1, y(2) · t2)
∗,

M12

(

(x, y)∗; (s1, s2)
∗(t)∗

)

=
∑

(x(1) · s1, x(2) · s2, y · t)∗,

M12

(

(x∗, y∗); (s∗1, . . . , s
∗
m)(t∗1, . . . , t

∗
n)

)

=
∑

(x∗
(1) · s

∗
1, . . . , x

∗
(m) · s

∗
m, y∗

(1) · t
∗
1, . . . , y

∗
(n) · t

∗
n).

References

[1] Ch. Brouder and A. Frabetti. Renormalization of QED with planar binary trees, Eur. Phys. J. C 19

(2001), 715-741.

[2] Ch. Brouder and A. Frabetti, QED Hopf algebras on planar binary trees, J. Alg. 267 (2003) 298–322.

[3] Ch. Brouder, A. Frabetti and Ch. Krattenthaler, Non-commutative Hopf algebra of formal diffeo-
morphisms, Adv. Math. 200 (2006) 479–524.

[4] Ch. Brouder and W. Schmitt, Renormalization as a functor on bialgebras, J. Pure Appl. Alg. 209
(2007) 477–495.
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