Parsimonious reduction of Gaussian mixture models with a variational-Bayes approach
Résumé
Aggregating statistical representations of classes is an important task for current trends in scaling up learning and recognition, or for addressing them in distributed in- frastructures. In this perspective, we address the problem of merging probabilistic Gaus- sian mixture models in an efficient way, through the search for a suitable combination of components from mixtures to be merged. We propose a new Bayesian modelling of this combination problem, in association to a variational estimation technique, that handles efficiently the model complexity issue. A main feature of the present scheme is that it merely resorts to the parameters of the original mixture, ensuring low computational cost and possibly communication, should we operate on a distributed system. Experimental results are reported on real data
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...