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Abstract

Aggregating statistical representations of classes is an important task for current

trends in scaling up learning and recognition, or for addressing them in distributed in-

frastructures. In this perspective, we address the problem of merging probabilistic Gaus-

sian mixture models in an efficient way, through the search for a suitable combination of

components from mixtures to be merged. We propose a new Bayesian modelling of this

combination problem, in association to a variational estimation technique, that handles

efficiently the model complexity issue. A main feature of the present scheme is that it

merely resorts to the parameters of the original mixture, ensuring low computational cost

and possibly communication, should we operate on a distributed system. Experimental

results are reported on real data.

∗This work was funded by ANR Safimage, in particular through P. Bruneau’s Ph.D. grant
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1 Introduction

In this paper, we address the issue of probabilistic mixture model combination, in the case

input and output models are Gaussian mixture models (GMM). This case is important, as this

semi-parametric form is one of the most employed and versatile tool for modelling the density

of multivariate continuous features. It is in particular employed for multimedia data, whether

audio [24] or visual, static [15] or dynamic [11].

Aggregation of class models is a classical topic, but growing needs from many fields can

be observed. Existing statistical learning and recognition tasks are being transposed onto

distributed computing systems (cluster, P2P). Related applications include scaling up class-

based multimedia retrieval systems [23] or estimation from sensor networks [21]. Data struc-

tures (e.g. tree-based) to handle masses of probabilistic models can also require merging these

models [28].

In such contexts, one should be able to make learning sub-systems cooperate or compete,

possibly in a decentralized fashion [4, 20]. This paper covers a central task among these :

how multiple parametric models of the same class, but estimated from distributed sources,

may merge into a single model, which parameters and complexity should be determined ? A

sensible benchmark would be supplied through a model that would have been directly estimated

on a centralized data source.

While a simple solution for a combined model would be obtained by a weighted sum of

Gaussian mixtures, this would generally result in an unnecessarily high number of Gaussian

components, with a view to capturing the underlying probability density. The scope of the

paper is a new scheme for estimating, from such a possibly over-complex mixture, a mixture

that is more parsimonious, yet attempts to preserve the ability to describe the underlying

generative process. Preserving parsimony is particularly important if such combinations follow

one after another, as one may face in large-scale cooperative multimedia class learning, in

multi-target temporal tracking applications, or for building a tree index of models.

A straightforward solution would consist in sampling data from this combined mixture and

re-estimating a mixture from this data, but this is generally not cost effective, especially in

high dimensional spaces. In contrast, our technique operates on the sole parameters of the over-

complex mixture parameters, ensuring lower cost for computation and communication, should

the scheme operated in a distributed setting. In fact, parsimony is obtained through combi-

nation of Gaussian components. By employing a Bayesian formulation of the over-complex

mixture parameter estimation and a variational approach to its resolution, the amount of

compression and the suitable combination of Gaussian components may be jointly determined.



Gaussian mixture simplification through crisp combination of Gaussian components may,

for small-size problems, be addressed through the Hungarian method to obtain a globally

optimal combination [17]. Lower cost, local optima have been sought in [13], where the authors

seek a combination that minimizes an approximation of Kullback-Leibler loss. Their technique

may be viewed as a kind of k-means operating over components. As an alternative, a procedure

akin to ascendent hierarchical clustering operating on Gaussian components is proposed in [26].

The search space considered in [28] is richer, as linear combinations of components are

sought, rather than binary assignments, corresponding to a shift from k-means to maximum

likelihood and EM operating on Gaussian components. However, these works leave open the

central issue of the criterion and procedure for determining the desirable number of components.

Let us also contrast the present work from advances in combinations of classifiers [16]

(ensemble methods [12], mixture of experts [6]). The present work does not combine opinions

or decisions given by discriminant classifiers on a particular data set, but rather considers

generative parametric class models and merges them at parameter level, without accessing

data.

Bayesian estimation of mixture models is a well-known principle to solving the above issue,

especially model complexity. In particular, the variational resolution provides a good trade-off

between accuracy and computation efficiency, with a procedure known as Variational Bayes-

EM [2] (VBEM hereafter), that compares favorably to more classical approximations of the

posterior (BIC, Laplace). Yet, the standard use of VBEM is applied to data in R
n. The

central contribution of our paper is to demonstrate how simplification of an over-complex

mixture may be carried out effectively by extending the Variational Bayes-EM principles to

handling Gaussian components instead of real vectors. Fig 1 sketches this goal.

In section 2, we disclose this reformulation of the VBEM variational probability distribu-

tion that takes parameters rather than pointwise data as input. We show that this leads to

coupled update equations, from which we derive an iterative EM-like algorithm. Yet, under the

assumption of several non-redundant mixtures to be merged, it would make sense to prevent

reunions of components originating from the same source. In section 3, a derivation taking

this principle into account is described. Section 4 provides experimental results obtained by

applying these algorithms to real data. We draw concluding remarks in section 5.



Figure 1: A toy-size illustration of the task addressed : two mixtures are added, then a

suitable combination of components is sought, jointly with the task of determining how many

components are required. The setting for prior distributions in the Bayesian estimation is

shown as a dashed line.

2 Mixture simplification using the Variational Bayes EM

principle

We first recall how the parameters and structure of a Gaussian mixture model may be estimated

through a variational Bayes procedure, in the classical case of data in R
n. We then show how

this framework may be extended to achieve clustering in a space of Gaussian components.

2.1 Bayesian estimation of a mixture

We consider a set of data X = [x1, . . . , xN ]T , to which we attempt to fit a probabilistic model

parameterized by θ. The classical maximum likelihood estimation consists in maximizing the

quantity p(X|θ), or equivalently the log-likelihood : L(X|θ) = ln p(X|θ). This quantity can be

interpreted as a measure for the model fit, i.e. how much the model is able to explain X. In the

case θ is possibly of any complexity, maximizing p(X|θ) will always lead to the most complex

model, and despite its perfect fit to the data, this model will lose most of its generalization

power.

The Bayesian framework consists in treating the log-likelihood as a part of the marginal

likelihood, or model evidence :

p(X) =

∫

p(X|θ) p(θ)dθ (1)

We stated earlier that the likelihood for over-complex models could grow infinitely : in eqn.



(1), these models are penalized.

Let us define Gaussian mixture models with the following notations:

p(xn|θ) =
K

∑

k=1

ωkN (xn|µk,Λ
−1
k ) (2)

where ωk, µk and Λk are respectively the weight, mean vector and precision matrix for the

component θk, and the full parameter set is denoted by θ = {θk}. We also define the following

lightweight notations: Ω = {ωk}, µ = {µk} and Λ = {Λk}. The ωk are under the constraint
∑

k ωk = 1.

Under i.i.d. assumption for X, we can conveniently decompose the global distribution:

p(Z|Ω) =
N
∏

n=1

K
∏

k=1

ωk
znk (3)

p(X|Z, µ,Λ) =
N
∏

n=1

K
∏

k=1

N (xn|µk,Λ
−1
k )znk (4)

where Z is a set of binary variables denoting the component from which each element of X

originates, i.e. znk = 1 ≡ xn i.i.d. from θk.

Various prior distributions for Gaussian mixtures were introduced in previous work. Roberts

and al. [25] proposed improper flat priors. The chosen distributions had good non-informative

properties, which lead to a simple analytic solution. The distributions induced by a GMM

(equations (3) and (4)) naturally suggest the usage of conjugate priors. Indeed, the normal

and multinomial distributions are members of the exponential family, and, as such, have a

conjugate distribution. Using conjugates has a crucial advantage : the product of a likelihood

function and its conjugate leads to an expression of the same functional form as the likelihood.

As we will see further, in the variational framework this property highly simplifies the calcu-

lations, while preserving all the expressivity of the framework. Conjugates have extensively

been used in the literature [2, 5, 10].

2.2 Variational Bayes estimation of the model

In this section, firstly we introduce general principles about variational methods, and then

decline these for the case of a GMM. This constitutes a preliminary for our method.

We then derive its extension for handling Gaussian components instead of multidimensional

data as input, and we explain how general VBEM properties enable automatic suppression of

irrelevant Gaussian components in the mixture reduction process.



2.2.1 Review of general principles

We usually distinguish two kinds of random variables : latent variables and parameters. Latent

variables scale with the data set (e.g. Z, that scales with X) while parameters are independent

of the data set size (e.g. θ). In this section, let notation Y gather both latent variables and

parameters.

For inference tasks, we usually specify a joint distribution p(X, Y ) over all variables. The

purpose of a method is then to infer a posterior distribution p(Y |X).

Instead of directly inferring p(Y |X), we define a distribution q over Y , called variational

distribution hereafter. p(Y |X) remains unknown, and the purpose is to approximate it. The

following scheme can be seen as an implementation of the principle described by equation 1.

According to a simple application of Bayes’ rule, the decomposition of the marginal likelihood

into a lower bound and a Kullback-Leibler divergence holds :

ln p(X) = L(q) +KL(q ‖ p) (5)

with :

L(q) =

∫

q(Y ) ln

{

p(X, Y )

q(Y )

}

dY (6)

KL(q ‖ p) = −

∫

q(Y ) ln

{

p(Y |X)

q(Y )

}

dY (7)

As we stated previously, ln p(X) is a constant. This means that maximizing L(q) is equiva-

lent to minimizing the divergence between p(Y |X) and q(Y ). Solving this problem will therefore

provide us with an approximation to p(Y |X).

Tractability of further calculations are ensured by assuming it is possible to express q(Y )

in a factorized form :

q(Y ) =
M
∏

i=1

qi(Yi) (8)

Under this formalism, we can rewrite (6) w.r.t. to a single term qj :

L(q) =

∫

qj ln p̃(X, Yj)dYj −

∫

qj ln qjdYj + const (9)

with :



ln p̃(X, Yj) =

∫

ln p(X, Y )
∏

i6=j

qidYi (10)

= Ei6=j [ln p(X, Y )] + const (11)

Ei6=j[.] denotes the expectation w.r.t. qi terms for i 6= j.

The expression (9) is a negative KL divergence between qj and p̃(X, Yj). This means that

maximizing L(q) is equivalent to minimizing this KL divergence. This occurs when the two

distributions are equal, we can therefore define qj in its optimal setting :

ln q∗j = Ei6=j[ln p(X, Y )] + const (12)

Let us consider the more specific case of Gaussian mixtures. We previously defined the

distributions (3) and (4), and now give the corresponding priors:

p(Ω) = Dir(Ω|α0) = C(α0)
K
∏

k=1

ωα0−1
k (13)

p(µ,Λ) = p(µ|Λ)p(Λ) (14)

=
K
∏

k=1

N (µk|m0, (β0Λk)
−1) W(Λk|W0, ν0) (15)

where Dir and W respectively denote the Dirichlet and Wishart distributions.

According to the associated graphical model (figure 2), expressions (4), (3), (13) and (15)

define the following joint distribution:

p(X,Z,Ω, µ,Λ) = p(X|Z, µ,Λ)p(Z|Ω)p(Ω)p(µ|Λ)p(Λ) (16)

Figure 2: Graphical model associated with the Bayesian GMM estimation problem



We define a factorized variational distribution:

q(Z,Ω, µ,Σ) = q(Z)q(Ω)
∏

k

q(µk,Σk) (17)

Applying formula (12) for q(Z), and identifying the obtained posterior to a multinomial

functional form gives the following estimates :

rnk =
ρnk

∑K

j=1 ρnj

(18)

with unnormalized log estimates:

ln ρnk = E[lnωk] +
1

2
E[ln det(Λk)] −

D

2
ln(2π) −

1

2
Eµk,Λk

[(xn − µk)
T Λk(xn − µk)] (19)

This update scheme uses the following moments evaluated w.r.t. the current θ estimates :

Eµk,Λk
[(xn − µk)

T Λk(xn − µk)] = Dβ−1
k + νk(xn −mk)

TWk(xn −mk) (20)

ln Λ̃k ≡ E[ln det(Λk)] =
D

∑

i=1

ψ

(

νk + 1 − i

2

)

+D ln 2 + ln det(Wk) (21)

ln ω̃k ≡ E[lnωk] = ψ(αk) − ψ(α̂) (22)

For convenience, current rnk estimates are used to define these synthetic statistics :

Nk =
N

∑

n=1

rnk (23)

x̄k =
1

Nk

N
∑

n=1

rnkxn (24)

Sk =
1

Nk

N
∑

n=1

rnk(xn − x̄k)(xn − x̄k)
T (25)

Again applying formula (12), and identifying adequate functional forms, we obtain posterior

model parameters estimates :

α = (αk) and αk = α0 +Nk (26)



βk = β0 +Nk (27)

mk =
1

βk

(β0m0 +Nkx̄k) (28)

W−1
k = W−1

0 +NkSk +
β0Nk

β0 +Nk

(x̄k −m0)(x̄k −m0)
T (29)

νk = ν0 +Nk (30)

Cycling through these update equations implements an EM-like algorithm. More precisely :

• E step : compute expressions (18), (20), (21), (22), (23), (24) and (25)

• M step : compute expressions (26), (27), (28) and (29)

2.2.2 Handling components to cluster as virtual samples

The introduction of this paper discussed contexts related to multimedia class description shar-

ing, in which recovering a common parsimonious mixture is a central issue. Now consider an

arbitrary mixture defining L components, with parameters θ′ = {Ω′, µ′,Λ′}. Let us note that

this mixture might be obtained by regrouping several descriptions. We then assume that X

and Z ′ were i.i.d sampled from this distribution. It is therefore possible to regroup X accord-

ing to the component from which its data was drawn. It leads us to the following formalism :

X = {x̂1, . . . , x̂L} with card(X) = N, x̂l = {xn|z
′
nl = 1} = {xln} and card(x̂l) = ω′

lN . Now we

express the likelihood (4) of such a dataset under a new and unknown model θ = {Ω, µ,Λ}.

Let us note that this new model comes with its specific latent variable Z 6= Z ′. For the further

developments to be tractable, we assume that ∀xn ∈ x̂l, znk = const = zlk. This can seem a

strong assumption, but simplifying a model will be more likely about regrouping components,

so in general it will hold. Thus we can rewrite expression (4) as follows :

p(X|Z, µ,Λ) =
K
∏

k=1

L
∏

l=1

p(x̂l|Z, µk,Λk)
zlk (31)

p(X|Z, µ,Λ) =
K
∏

k=1

L
∏

l=1





ω′

l
N

∏

n=1

N (xln|µk,Λ
−1
k )





zlk

(32)

ln p(X|Z, µ,Λ) =
K

∑

k=1

L
∑

l=1

zlk





ω′

l
N

∑

n=1

lnN (xln|µk,Λ
−1
k )



 (33)



For N sufficiently large, we can make the following approximation :

ω′

l
N

∑

n=1

lnN (xln|µk,Λ
−1
k ) ≃ ω′

lNEµ′

l
,Λ′

l

[

lnN (x|µk,Λ
−1
k )

]

(34)

This statement is known as virtual sampling, and was introduced in [29, 28].

The expectation may be explicited :

Eµ′

l
,Λ′

l

[

lnN (x|µk,Λ
−1
k )

]

=
∫

N (x|µ′
l,Λ

′−1
l ) lnN (x|µk,Λ

−1
k ) dx (35)

Eµ′

l
,Λ′

l

[

lnN (x|µk,Λ
−1
k )

]

= −KL
(

N (x|µ′
l,Λ

′−1
l ) ‖ N (x|µk,Λ

−1
k )

)

−H(N (x|µ′
l,Λ

′−1
l ))

(36)

with KL(q0 ‖ q1) the KL divergence of q1 from q0 and H(q0) the entropy of q0. These two

terms benefit from closed-form expressions [7]. Thus by reinjecting (36) into (34), and then

(34) into (33), we obtain the convenient following expression for p(X|Z, µ,Λ):

ln p(X|Z, µ,Λ) = N

K
∑

k=1

L
∑

l=1

zlkω
′
l

[

−KL
(

N (x|µ′
l,Λ

′−1
l ) ‖ N (x|µk,Λ

−1
k )

)

−H(N (x|µ′
l,Λ

′−1
l ))

]

(37)

ln p(X|Z, µ,Λ) = N

K
∑

k=1

L
∑

l=1

zlkω
′
l

[

1

2
ln det Λk −

1

2
Tr(ΛkΛ

′−1
l ) −

1

2
(µ′

l − µk)
T Λk(µ

′
l − µk) −

d

2
ln(2π)

]

(38)

Here we notice that by considering an hypothetic data set originating from an arbitrary

input model θ′, it is possible to derive a limit expression for ln p(X|Z, µ,Λ) that exhibits no

dependence on the original data X and Z ′. The formalism change also has consequences on

(3) : as we previously stated that zlk = znk ∀xn ∈ x̂l, we can write :

p(Z|Ω) =
N
∏

n=1

K
∏

k=1

ωznk

k =
L

∏

l=1

K
∏

k=1

ω
Nω′

l
zlk

k (39)

Variational update equations are partially based on moments evaluated w.r.t p(Z) and

p(X). Therefore cascading consequences occur relatively to the classical VBEM algorithm.

As a consequence of (38) and (39), the modified unnormalized estimates for q(Z) obtained

from application of formula (12) now are :

ln(ρlk) =
Nω′

l

2
(2E[lnωk] + E[ln det Λk] − d ln(2π))

−
Nω′

l

2

(

Eµk,Λk

[

Tr(ΛkΛ
′−1
l ) + (µ′

l − µk)
T Λk(µ

′
l − µk)

])

(40)



leading to {rlk} estimates as in the classic scheme. The moment w.r.t µk and Λk is easily

evaluated to give d
β k

+ νk

[

Tr(WkΛ
′−1
l ) + (µ′

l −mk)
TWk(µ

′
l −mk)

]

.

Analogously to the classical scheme, for further convenience, we define the following syn-

thetic statistics :

Nk =
L

∑

l

Nω′
lrlk (41)

x̄k =
1

Nk

L
∑

l

Nω′
lrlkµ

′
l (42)

Sk =
1

Nk

L
∑

l

Nω′
lrlk(µ

′
l − x̄k)(µ

′
l − x̄k)

T (43)

Ck =
1

Nk

L
∑

l

Nω′
lrlkΛ

′−1
l (44)

Applying formula (12) for q(Ω) and q(µ,Λ), and using the synthetic statistics, we obtain

the following update formulæ :

αk = α0 +Nk (45)

βk = β0 +Nk (46)

mk =
1

βk

(β0m0 +Nkx̄k) (47)

W−1
k = W−1

0 +NkSk +NkCk +
β0Nk

β0 +Nk

(x̄k −m0)(x̄k −m0)
T (48)

νk = ν0 +Nk (49)

The classical VBEM algorithm is known to monotonically decreases the KL divergence

between the variational pdf and the true posterior [5]. This is equivalent to maximizing the

lower bound of the complete likelihood. As we can compute this lower bound, and as this

bound should never decrease, we can test for convergence by comparing two successive values

of the bound. For our derivation, only terms involving X or Z might change, these are the

following :

E[ln p(X|Z, µ,Λ)]=
1

2

∑

k

Nk{ln Λ̃k −
d

βk

− νkTr ((Sk + Ck)Wk)

− νk(x̄k −mk)
TWk(x̄k −mk) − d ln(2π)}

(50)

E[ln p(Z|Ω)]=
∑

k

Nk ln ω̃k (51)



Regarding the choice of the prior α0 parameter, the strategy described in [5] still applies

to our context. By choosing α0 < 1, the estimation process will favor a solution where at least

one of the ωk is 0. Therefore, by choosing a sufficiently large initial number K of components,

we shall obtain a number of effective components K’. In the case of our method, we reduce

the virtual sample : as we reduce it to the strictly necessary number of components, this is

equivalent to suppressing redundancy in the input GMM.

3 Obtaining parsimony under constraints

Let us consider several data repositories, each one being the source of a Gaussian mixture

fitted on the available data. The method proposed in section 2.2.2, named VBmerge hereafter,

makes a weighted sum of all components from all sources in a single large mixture, and reduces

it. Yet, doing so with a large number of sources has a drawback : as we obtain a globally

very noisy model, the number of components is reduced drastically (see experimental results).

Should we assume that each source produces a non-redundant Gaussian mixture, it would be

sensible to penalize reductions that imply assigning components originating from the same

source to the same target component.

3.1 Integrating constraints in the framework

Consequently, let us design a probabilistic model and derive the associated estimation algo-

rithm, that takes into account this constraint to tackle the mixture merging question efficiently.

Consider that the L components come from P distinct sources (necessarily, L ≥ P ). We denote

alp the binary variable that denotes wether component l originates from source p or not. Let

us define A the L × P matrix formed with alp values. As we know where each component

originates from, A is a set of observed values.

We define a pdf over this new data set. The purpose of such a distribution is to model how

much assignments of the L components violate or enforce the constraints defined by A, so it is

sensible to restrict A dependencies to Z. Furthermore, A can be seen as originating from this

distribution ; an assignment configuration (summarized by Z) enforcing the constraints would

therefore result in a higher likelihood for the model. Before introducing the distribution, let

us consider the P × K matrix M = ATZ. One of its single terms mpk measures how many

components from a single source p are associated with the same target component k. Clearly,

we want this amount to be as low as possible, so we model this constraint with a Poisson

distribution parametrized with λ = 1 over each term. This will tend to favor rare events. Thus



the pdf over A is as follows :

p(A|Z) = p(M = ATZ) =
P

∏

p=1

K
∏

k=1

e−1

(1 +mpk)!
(52)

The term 1 in eqn. (52) is added for conveniency, and causes no loss of generality. The

joint distribution (16) is then augmented with eqn. (52).

Let us note that no additional term is added to the factorized distribution (17), and that,

according to the general formulation (12), the term p(A|Z) shall only influence the optimal

setting for q(Z). Therefore, update formulae from section 2.2.2 will remain unchanged except

for the unnormalized estimates of Z (eqn (40)) :

ln q∗(Z) =
L

∑

l=1

K
∑

k=1

zlk ln ρlk −
K

∑

k=1

P
∑

p=1

ln(1 +mpk)! + const (53)

Or equivalently :

ln q∗(Z) =
L

∑

l=1

K
∑

k=1

zlk ln ρlk −
K

∑

k=1

P
∑

p=1

mpk
∑

i=1

ln(1 + i) + const (54)

Let us denote z.k the set {zlk| ∀l} (and respectively zl.). In the traditional scheme, ln q∗(Z)

factorizes over l and k, giving rise to independent optimal zlk estimates (more precisely, only

unnormalized estimates are fully independent : each zlk ultimately depends on ρl. in order to

obtain normalized rlk values). Here this does not hold any more. All zlk forming a single z.k

are co-dependent : we must devise an alternate to the traditional E step.

We choose to define an order in the set of individuals, and approximate the overall co-

dependent estimates by a one-pass scheme based on using already discovered estimates. This

leads to the following approximation :

q(Z) = q(z1.)q(z2.|z1.)q(z3.|z1.z2.) . . . q(zL.|z1. . . . zL−1.) (55)

Our E step algorithm will proceed each term of the r.h.s. in increasing ranks order. We

will describe the 2 first steps of the algorithm, leading to a general formulation. This iterated

conditional scheme is closely related to ICM (iterated conditional modes) [3].

3.2 Initializing the scheme

Let us recall that mpk =
∑L

l=1 alpzlk. Our formulation allows us to restrict this sum to the

current rank of the algorithm. For the first step we have :



ln q∗(z1.) =
K

∑

k=1

z1k ln ρ1k −
K

∑

k=1

P
∑

p=1

ln(1 + a1pz1k) + const (56)

For a single z1k, this leads to :

ln q∗(z1k) = z1k ln ρ1k −
P

∑

p=1

ln(1 + a1pz1k) + const (57)

Clearly, as such, this expression cannot give a multinomial law estimate. However, using a

first order Taylor expansion for ln(1 + x), we obtain :

ln q∗(z1k) = z1k ln ρ1k −
P

∑

p=1

a1pz1k + const (58)

ln q∗(z1k) = z1k ln
ρ1k

e
PP

p=1
a1p

+ const (59)

As each original component belongs to only one source,

ln q∗(z1k) = z1k ln
ρ1k

e
+ const (60)

Giving a modified unnormalized estimate ρ′1k = ρ1k

e
. This leads to the same normalized

estimates as in the classical scheme (e denominator is constant and disappears).

3.3 A new general update formula for ln q∗(Z)

Changing the rank of the restriction in eq. 56 leads to :

ln q∗(z2.|z1.) =
K

∑

k=1

z2k ln ρ2k −
K

∑

k=1

P
∑

p=1

ln(1 + a1pz1k)

−
K

∑

k=1

P
∑

p=1

ln(1 + a1pz1k + a2pz2k) + const

(61)

After considering a single k, and applying Taylor expansion supplies:

ln q∗(z2k|z1k) = z2k ln ρ2k −
P

∑

p=1

a1pz1k

−
P

∑

p=1

(a1pz1k + a2pz2k) + const

(62)

Let us note aimax = arg maxp aip and zimax = arg maxk zik. Using these notations, the previous

expression can be factorized as following :

ln q∗(z2k|z1k) = z2k(ln ρ2k − 1 − 2δa1max,a2max
.δz1max,k) + const (63)



where δ is the Kronecker delta. This leads to a modified unnormalized estimate :

ρ′2k =
ρlk

e1+2δa1max,a2max
.δz1max,k

For any rank, same considerations lead to the following general formula :

ρ′jk =
ρjk

e1+
Pj−1

i=1
(j−i+1).δaimax,ajmax

.δzimax,k

(64)

where j is the rank of the current item (i.e. original component).

3.4 Modified bound

Adding a term in our joint distribution implies modifying the bound discussed at the end of

section 2.2.2. More specifically, the following term shall be added :

E[ln p(A | Z)] =
K

∑

k=1

P
∑

p=1



−1 −

E[mpk]
∑

i=0

ln(1 + i)



 (65)

= −KP −
K

∑

k=1

P
∑

p=1

E[mpk]
∑

i=0

ln(1 + i) (66)

with

E[mpk] = E

[

L
∑

l=1

alpzlk

]

=
L

∑

l=1

alpE[zlk] =
L

∑

l=1

alprlk (67)

In the classical VBEM scheme, this lower bound is strictly increasing during the estimation

process. As we chose an approximate heuristic for our modified E step, this property does

not hold any more : slight decreases can therefore be observed. But this does not change the

principle of the algorithm : we still can use ∆(bound) < threshold as a stop criterion, the only

difference being that now ∆ might be negative.

4 Experiments

The framework presented here can be applied to numerous tasks. In this paper we propose

two simple experimental settings :

• a case of distributed clustering, where several cluster structures will be merged,

• and a simple classification task performed over a database of images.

By doing so, we aim at showing :



• the respective interests of the methods presented in the paper (VBmerge or its constrained

derivation),

• comparisons with alternative methods (resampling, k-nearest neighbors)

Task 1 : mixture estimation from distributed data

We consider a data set that is partitioned across several sites. On each of these sites, mixture

model estimation is carried out independently, on local data. This scenario is typical of many

distributed computing settings. Our point is to assess the quality of the model that can ob-

tained by aggregating models fitted separately, especially compared to what would be obtained

by fitting directly a GMM on the whole data set (impossible in real-world application, but a

good figure-of-merit in evaluation phase). Secondly, a suitable initial value for K is sought.

Indeed, K should be as big as possible to avoid the worst local minima, but it also should be

as small as possible to limit the computational resources needed.

For these experiments, we used three UCI data sets : Shuttle used by the StatLog project,

pen-based recognition of handwritten digits data [1] (named Pendigits hereafter), and the

MAGIC Gamma telescope data set [8] (named magic hereafter). Shuttle has 9 numerical

attributes, which are flight measurements obtained from a spacecraft. The status associated

with each observation will stand for the class (or ground truth), and we have 5 different possible

status in the data set. Pendigits has 16 numerical attributes, being obtained from positions of

a stylus on a tablet. As the class is the digit drawn on the tablet, we have 10 classes. magic

is defined over 10 numerical attributes. This data set contains background or positive signals,

which form 2 distinct classes. We randomly selected 1000 items from each of these databases.

We then followed the following protocol :

• global model fitting on the whole data set,

• separation of the 1000 observations into 10 subsamples,

• model fitting on each subsample,

• aggregation of separate models, and comparisons to the global model. The model ob-

tained by resampling from the weighed average of the separate models is also considered.

For the constrained VBmerge scheme, constraints are specified between components orig-

inating from the same submodel.

The ground truth classes might not conform to the Gaussian hypothesis (i.e. they do not

originate from unknown Gaussians), so BIC scores [27] measuring a likely number of groups



are given for each data set as a reference. These scores were obtained with a classic EM

algorithm for Gaussian mixtures. As fitting a Gaussian mixture on a data set is equivalent to

building a cluster structure, we measured the posterior couple error (this measure penalizes

cluster structures that gather data items from different true classes, and reciprocally), the

number of final effective components (i.e. K’ denoted previously) of each model, and the

Jensen-Shannon (JS) divergence of separate, merged, or resampled models w.r.t. the overall

model. The experiment was conducted with various values for K, and each result was averaged

over 20 runs. JS divergence is a symmetric and normalized version of KL divergence. Average

measures for models fitted on subsamples are given as a comparison. Results are provided in

figures 3 and 4. Let us add a remark about the separation into subsamples : the subsampling

is performed randomly and independently for each run. A bias is induced by this design choice.

For example, the lack of smoothness of the curves presented on figures 3 and 4 is an artefact

associated to this bias. Nevertheless, we believe that this choice, associated with averaging

over 20 runs, leads to much more significant and robust results than what would be obtained

with a ”static” subsampling.

The following remarks may be drawn from these results :

• depending on the data set, the observed couple error would not be interpreted in the same

way : the alternate schemes behave better for magic, worse for pendigits, and similarly

for Shuttle. Yet this measure is not a very good reference, as it relies on the Gaussianity

of the true classes.

• Measured BIC scores indicate the most likely number of groups is between 6 and 10 for

pendigits, around 4 for Shuttle and around 3 for pendigits. Let us especially notice the

tendency of the constrained scheme to over-estimate the number of groups.

• However, the divergences of the distributions obtained with VBmerge or its constrained

version are generally better than those obtained with a resampling scheme, with a much

lower algorithmic cost.

• For almost all curves there is an asymptotic behaviour : beyond a certain K, increasing

it does not significantly change the expected result. By visually inspecting the graphs,

we can set this number to 250. This number will be use for the variational procedures

involved in the next section.

• The overhead in terms of model complexity for the constrained scheme is generally out-

weighed by a lower divergence w.r.t the global model. In cases computational resources
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Figure 3: Results presented as a function of the initial K. a) couple error for Shuttle b) number

of effective components for Shuttle c) JS divergence w.r.t the overall model for Shuttle d) couple

error for pendigits e) number of effective components for pendigits f) JS divergence w.r.t the

overall model for pendigits
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might be an issue, post-processing on the output of our constrained scheme may be con-

sidered. As shown in [9], the cost of VBmerge is almost linear w.r.t the number of input

components : in this case it will be almost insignificant because this number will be

already strongly reduced.

Task 2 : a naive classification task

Let us illustrate our scheme in the context of visual object recognition. This experiment does

not aim at competing with current methods (e.g. vector-quantized SIFT/GIST words inputs

Latent Dirichlet Allocation models [18]), but rather showing how the technique may be used

in the framework of a tree-based class indexing scheme [28].

For this experiment, we selected 300 images from the 10 first categories in the Caltech-256

object category dataset [14] (30 images randomly chosen in each category). We consider each

image as a data source, and fit a Gaussian mixture over its pixel data (L,a,b color space).

Obtained individual Gaussian mixtures comprise 20.6 components on average.

The protocol is then similar to the one suggested by Vasconcelos [28] : we perform a

leave-one-out classification task, where each image is taken alone and matched against the

database. The matching database object is chosen as having the lowest JS divergence w.r.t

the query image. With the VBmerge and constrained schemes, all other images are used to

build one summary for each class. As a reference, we implemented a version where summaries

are obtained with a resampling scheme, and also a k-nearest neighbor classifier which tries to

match the images against the database. The best k was evaluated experimentally to 5. The

experiment is performed for each image and each scheme, and the results were averaged over

20 runs. These are presented in figure 1.

Here we just wanted to underline that the results are not significantly different from those

obtained with a classical classifier. Moreover, the objects in the chosen collection suffer from

cluttered background, which makes the chosen representation space poorly distinctive. Ob-

servations used herein are crude. Yet, as learning visual vocabularies and topics from web-

distributed training sets is currently attracting growing attention, a valuable perspective will

consist in assessing the present technique with state-of-the-art observations (e.g. GIST de-

scriptors [22], SIFT descriptors [19]).

The indicated computational times are the seconds taken to match an element to the

database. We see that the constrained scheme leads to a very significant gain, with little

error loss and model complexity overhead. To provide a fair comparison with k-NN, at each

classification attempt with VBmerge, its constrained version or the resampling scheme, we



recompute the associated summaries (i.e. by adding the element from the previous attempt and

removing the current one). Under the assumption of a static set of summaries, computational

time would therefore be greatly reduced.

classif. error (%) average time (s) number of components

k-NN (k=5) 68.7 8.09

resampling 68.5 42.88 10.42

VBmerge 69.6 10.71 18.07

constrained 70.1 3.06 21.13

Table 1: Results for the classification task

5 Conclusion

Low-cost combination of multimedia class descriptions is a crux of future pattern recogni-

tion application of distributed infrastructures. In this paper, we described a novel approach

dedicated to the mixture reduction phase involved in merging Gaussian mixture models, by

transposing the variational Bayes framework to Gaussian components. We showed that oper-

ating through parameters provides considerable advantages in terms of cost efficiency, while

trading off only little in terms of estimation accuracy.

We are considering several extensions of the present work. First, aggregating mixtures of

PPCA are in fact a direct extension of our proposal, that should benefit handling of high dimen-

sional spaces. A second task under way attempts to integrate, at the Gaussian component-level,

some constraints that have been proposed in semi-supervised clustering (e.g. assign/don’t as-

sign to the same cluster). Thereby, in the mixture reduction process, the mixture from which

each component originates would be taken into account. Finally, the counterpart of the present

work for mixture of t-distributions would enable its application for robust probabilistic dis-

tributed clustering, with richer representations than standard consensus approaches.

References

[1] F. Alimoglu. Combining multiple classifiers for pen-based handwritten digit recognition.

Technical report, Institute of Graduate Studies in Science and Engineering, 1996.



[2] H. Attias. A variational bayesian framework for graphical models. Advances in Neural

Information Processing Systems, 2000.

[3] S. Basu, M. Bilenko, A. Banerjee, and R. J. Mooney. Probabilistic semi-supervised clus-

tering with constraints. In Semi-Supervised Learning. MIT Press, 2006.

[4] M. Bechchi, G. Raschia, and N. Mouaddib. Merging distributed database summaries. In

Proc. ACM CIKM ’07, pages 419–428, Lisbon, November 2007.

[5] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, New York, 2006.

[6] Christopher M. Bishop and Markus Svensén. Bayesian hierarchical mixtures of experts.

In Christopher Meek and Uffe Kjærulff, editors, UAI, pages 57–64. Morgan Kaufmann,

2003.

[7] R. E. Blahut. Principles and Practice of Information Theory. Addison-Wesley, 1987.

[8] R. K. Bock, A. Chilingarian, M. Gaug, F. Hakl, T. Hengstebeck, M. Jirina, J. Klaschka,

E. Kotrc, P. Savicky, S. Towers, A. Vaiciulis, and W. Wittek. Methods for multidi-

mensional event classification: a case study using images from a cherenkov gamma-ray

telescope. Nuclear instruments and methods in physics research. Section A, Accelerators,

spectrometers, detectors and associated equipment, 516(2-3):511–528, 2004.

[9] P. Bruneau, M. Gelgon, and F. Picarougne. Parsimonious variational-bayes mixture ag-

gregation with a poisson prior. To be published in EUSIPCO’09, 2009.

[10] C. Constantinopoulos and M. K. Titsias. Bayesian feature and model selection for Gaus-

sian mixture models. IEEE Trans. on Pattern Analysis Machine Intelligence, 28(6):1013–

1018, 2006.

[11] R. Fablet, P. Bouthemy, and P. Perez. Non-parametric motion characterization using

causal probabilistic models for video indexing and retrieval. IEEE Trans. on Image Pro-

cessing, 11(4), apr 2002.

[12] Y. Freund. An adaptive version of the boost by majority algorithm. Machine Learning,

43(3):293–318, 2001.

[13] J. Goldberger and S. Roweis. Hierarchical clustering of a mixture model. NIPS, 2004.

[14] G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset. Technical

Report 7694, California Institute of Technology, 2007.



[15] R. Hammoud and R. Mohr. Mixture densities for video objects recognition. In Interna-

tional Conference on Pattern Recognition (ICPR’2000), pages 71–75, Barcelona, Spain,

September 2000.

[16] J. Kittler, M. Hatef, R. Duin, and J. Matas. On combining classifiers. IEEE Trans.

Pattern Anal. Mach. Intell., 20(3):226–239, 1998.

[17] B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms. Springer,

2002.

[18] D. Larlus and F. Jurie. Latent mixture vocabularies for object categorization and seg-

mentation. Journal of Image & Vision Computing, 27(5):523–534, apr 2009.

[19] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International

Journal of Computer Vision, 60:91–110, 2004.

[20] A. Nikseresht and M. Gelgon. Gossip-based computation of a Gaussian mixture model for

distributed multimedia indexing. IEEE Transactions on Multimedia, (3):385–392, March

2008.

[21] R. Nowak. Distributed EM algorithms for density estimation and clustering in sensor

networks. IEEE Trans. on Signal Processing, 51(8), August 2003.

[22] A. Oliva and A. Torralba. Modeling the shape of the scene : a holistic representation of

the spatial envelope. International Journal of Computer Vision, 42(3):145–175, 2001.

[23] J. Ponce, M. Hebert, C. Schmid, and A. Zisserman. Towards category-level object recog-

nition. Springer, 2006.

[24] D.A. Reynolds and R.C Rose. Text independent speaker identification using gaussian

mixture speaker models. IEEE Transactions on Speech and Audio Processing, 3(1):72–83,

1995.

[25] S. J. Roberts, D. Husmeier, I. Rezek, and W. Penny. Bayesian approaches to Gaussian

mixture modelling. IEEE Trans. on Pattern Analysis Machine Intelligence, 20(11):1133–

1142, 1998.

[26] A. Runnalls. A Kullback-Leibler approach to Gaussian mixture reduction. IEEE Trans.

on Aerospace and Electronic Systems, 43(3):989–999, July 2007.



[27] G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6:461–464,

1978.

[28] N. Vasconcelos. Image indexing with mixture hierarchies. Proceedings of IEEE Conference

in Computer Vision and Pattern Recognition, 1:3–10, 2001.

[29] N. Vasconcelos and A. Lippman. Learning mixture hierarchies. In Neural Information

Processing Systems (NIPS) Conference, Denver, Colorado, September 1998.


