Causal graphical models with latent variables: Learning and inference - Archive ouverte HAL
Communication Dans Un Congrès Année : 2007

Causal graphical models with latent variables: Learning and inference

Stijn Meganck
  • Fonction : Auteur
  • PersonId : 847264
Bernard Manderick
  • Fonction : Auteur
  • PersonId : 847265

Résumé

Several paradigms exist for modeling causal graphical models for discrete variables that can handle latent variables without explicitly modeling them quantitatively. Applying them to a problem domain consists of different steps: structure learning, parameter learning and using them for probabilistic or causal inference. We discuss two well-known formalisms, namely semi-Markovian causal models and maximal ancestral graphs and indicate their strengths and limitations. Previously an algorithm has been constructed that by combining elements from both techniques allows to learn a semi-Markovian causal models from a mixture of observational and experimental data. The goal of this paper is to recapitulate the integral learning process from observational and experimental data and to demonstrate how different types of inference can be performed efficiently in the learned models. We will do this by proposing an alternative representation for semi-Markovian causal models.
Fichier principal
Vignette du fichier
MeganckLatent1.pdf (141.19 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00412946 , version 1 (15-04-2020)

Identifiants

Citer

Stijn Meganck, Philippe Leray, Bernard Manderick. Causal graphical models with latent variables: Learning and inference. ECSQARU, 2007, Hammamet, Tunisia. pp.5-16, ⟨10.1007/978-3-540-75256-1_4⟩. ⟨hal-00412946⟩
60 Consultations
215 Téléchargements

Altmetric

Partager

More