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Abstract. Several paradigms exist for modeling causal graphical models
for discrete variables that can handle latent variables without explicitly
modeling them quantitatively. Applying them to a problem domain con-
sists of different steps: structure learning, parameter learning and using
them for probabilistic or causal inference. We discuss two well-known
formalisms, namely semi-Markovian causal models and maximal ances-
tral graphs and indicate their strengths and limitations. Previously an
algorithm has been constructed that by combining elements from both
techniques allows to learn a semi-Markovian causal models from a mix-
ture of observational and experimental data. The goal of this paper is to
recapitulate the integral learning process from observational and experi-
mental data and to demonstrate how different types of inference can be
performed efficiently in the learned models. We will do this by proposing
an alternative representation for semi-Markovian causal models.

1 Introduction

This paper discusses causal graphical models for discrete variables that can han-
dle latent variables without explicitly modeling them quantitatively. In the un-
certainty in artificial intelligence area there exist several paradigms for such
problem domains. Two of them are semi-Markovian causal models and maxi-
mal ancestral graphs. Applying these techniques to a problem domain consists
of several steps, typically: structure learning from observational and experimen-
tal data, parameter learning, probabilistic inference, and, quantitative causal
inference.

Semi-Markovian causal models (SMCMs) are an approach developed by Tian
and Pearl [1, 2]. They are specifically suited for performing quantitative causal
inference in the presence of latent variables. However, at this time no efficient
parametrisation of such models is provided and there is no algorithm for per-
forming efficient probabilistic inference. Furthermore there are no techniques to
learn these models from data issued from observations, experiments or both.

Maximal ancestral graphs (MAGs) [3] are specifically suited for structure
learning in the presence of latent variables from observational data. However,
the techniques only learn up to Markov equivalence and provide no clues on



which additional experiments to perform in order to obtain the fully oriented
causal graph. See [4, 5] for that type of results for Bayesian networks without
latent variables. Furthermore, as of yet no parametrisation for discrete variables
is provided for MAGs and no techniques for probabilistic inference have been
developed. There is some work on algorithms for causal inference, but it is re-
stricted to causal inference quantities that are the same for an entire Markov
equivalence class of MAGs [6, 7].

We have chosen to use SMCMs as a final representation in our work, because
they are the only formalism that allows to perform causal inference while fully
taking into account the influence of latent variables. However, we will combine
existing techniques to learn MAGs with newly developed methods to provide an
integral approach that uses both observational data and experiments in order to
learn fully oriented semi-Markovian causal models.

Furthermore, we have developed an alternative representation for the proba-
bility distribution represented by a SMCM, together with a parametrisation for
this representation, where the parameters can be learned from data with clas-
sical techniques. Finally, we discuss how probabilistic and quantitative causal
inference can be performed in these models with the help of the alternative
representation and its associated parametrisation.

The next section introduces some notations and definitions and we discuss
causal models with latent variables. After that we discuss structure learning
for those models and in the next section we introduce techniques for learning a
SMCM with the help of experiments. Then we introduce a new representation for
SMCMs that can easily be parametrised. We also show how both probabilistic
and causal inference can be performed with the help of this new representation.

2 Preliminaries

We start this section by introducing basic notations necessary for the under-
standing of the rest of this paper. Then we will discuss classical probabilistic
Bayesian networks followed by causal Bayesian networks. Finally we handle the
difference between probabilistic and causal inference, or observation vs. manip-
ulation.

2.1 Notations

In this work uppercase letters are used to represent variables or sets of variables,
i.e. V = {V1, . . . , Vn}, while corresponding lowercase letters are used to represent
their instantiations, i.e. v1, v2 and v is an instantiation of all vi. P (Vi) is used to
denote the probability distribution over all possible values of variable Vi, while
P (Vi = vi) is used to denote the probability of the instantiation of variable Vi

to value vi. Usually, P (vi) is used as an abbreviation of P (Vi = vi).

The operators Pa(Vi), Anc(Vi), Ne(Vi) denote the observable parents, ances-
tors and neighbors respectively of variable Vi in a graph and Pa(vi) represents



the values of the parents of Vi. If Vi ↔ Vj appears in a graph then we say that
they are spouses, i.e. Vi ∈ Sp(Vj) and vice versa.

When two variables Vi, Vj are independent we denote it by (Vi⊥⊥Vj), when
they are dependent by (Vi 2Vj).

2.2 Definitions

Both techniques are an extension of causal Bayesian networks for modeling sys-
tems without latent variables.

Definition 1. A causal Bayesian network is a triple 〈V,G, P (vi|Pa(vi))〉,
with:

– V = {V1, . . . , Vn}, a set of observable discrete random variables
– a directed acyclic graph (DAG) G, where each node represents a variable

from V

– parameters: conditional probability distributions (CPD) P (vi|Pa(vi)) of each
variable Vi from V conditional on its parents in the graph G.

– Furthermore, the directed edges in G represent autonomous causal relations
between the corresponding variables.

The interpretation of directed edges is different from a classical BN, where the
arrows only represent a probabilistic dependency, and not necessarily a causal
one.

This means that in a CBN, each CPD P (vi|Pa(vi)) represents a stochastic
assignment process by which the values of Vi are chosen in response to the values
of Pa(Vi) in the underlying domain. This is an approximation of how events are
physically related with their effects in the domain that is being modeled. For
such an assignment process to be autonomous means that it must stay invariant
under variations in the processes governing other variables [1].

In the above we made the assumption of causal sufficiency, i.e. that for
every variable of the domain that is a common cause, observational data can
be obtained in order to learn the structure of the graph and the CPDs. Often
this assumption is not realistic, as it is not uncommon that a subset of all the
variables in the domain is never observed. We refer to such a variable as a latent
variable.

The central graphical modeling representation that we use are the semi-
Markovian causal models. They were first used by Pearl [1], and Pearl and Tian
[2] have developed causal inference algorithms for them.

Definition 2. A semi-Markovian causal model (SMCM) is an acyclic causal
graph G with both directed and bi-directed edges. The nodes in the graph repre-
sent observable variables V = {V1, . . . , Vn} and the bi-directed edges implicitly
represent latent variables L = {L1, . . . , Ln′}.

See Figure 1(b) for an example SMCM representing the underlying DAG in
(a).
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Fig. 1. (a) A problem domain represented by a causal DAG model with observable
and latent variables. (b) A semi-Markovian causal model representation of (a). (c) A
maximal ancestral graph representation of (a).

Maximal ancestral graphs are another approach to modeling with latent vari-
ables [3]. The main research focus in that area lies on learning the structure of
these models and on representing exactly all the independences between the
observable variables of the underlying DAG.

Ancestral graphs (AGs) are graphs that are complete under marginalisation
and conditioning. We will only discuss AGs without conditioning as is commonly
done in recent work [8–10].

Definition 3. An ancestral graph without conditioning is a graph with no
directed cycle containing directed → and bi-directed ↔ edges, such that there is
no bi-directed edge between two variables that are connected by a directed path.

Definition 4. An ancestral graph is said to be a maximal ancestral graph

if, for every pair of non-adjacent nodes Vi, Vj there exists a set Z such that Vi

and Vj are d-separated given Z.

See Figure 1(c) for an example MAG representing the underlying DAG in (a)
and corresponding to the SMCM in (b).

Definition 5. Let [G] be the Markov equivalence class for an arbitrary MAG G.
The complete partial ancestral graph (CPAG) for [G], PG, is a graph with
possibly the following edges →,↔, o−o, o→, such that

1. PG has the same adjacencies as G (and hence any member of [G]) does;

2. A mark of arrowhead (>) is in PG if and only if it is invariant in [G]; and

3. A mark of tail (−) is in PG if and only if it is invariant in [G].

4. A mark of (o) is in PG if not all members in [G] have the same mark.

See Figure 2 for the corresponding CPAG for the MAG shown in Figure 1(c).
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Fig. 2. The CPAG corresponding to the MAG in Figure 1(c).

3 Structure Learning with Latent Variables

Just as learning a graphical model in general, learning a model with latent vari-
ables consists of two parts: structure learning and parameter learning. Both can
be done using data, expert knowledge and/or experiments. In this section we dis-
cuss structure learning and we differentiate between learning from observational
and experimental data.

3.1 Learning from observational data

In the literature no algorithm for learning the structure of an SMCM exists. In
order to learn MAGs from observational data a constraint based learning algo-
rithm has been developed. It is called the Fast Causal Inference (FCI) algorithm
[11] and it uses conditional independence relations found between observable
variables to learn a structure. Recently this result has been extended with the
complete tail augmentation rules introduced in [12]. The results of this algo-
rithm is a complete partial ancestral graph (CPAG), representing the Markov
equivalence class of MAGs consistent with the data.

In a CPAG the directed edges have to be interpreted as representing ancestral
relations instead of immediate causal relations. More precisely, this means that
there is a directed edge from Vi to Vj if Vi is an ancestor of Vj in the underlying
DAG and there is no subset of observable variables D such that (Vi⊥⊥Vj |D).
This does not necessarily mean that Vi has an immediate causal influence on Vj ,
it may also be a result of an inducing path between Vi and Vj . An inducing path
between Vi and Vj is a path that can not be blocked by any subset of variables,
the official definition is given below:

Definition 6. An inducing path is a path in a graph such that each observable
non-endpoint node is a collider, and an ancestor of at least one of the endpoints.

A consequence of these properties of MAGs and CPAGs is that they are
not very suited for general causal inference, since the immediate causal parents
of each observable variable are not available and this information is needed to



perform the calculations. As we want to learn models that can perform causal
inference, we will discuss how to transform a CPAG into a SMCM next and
hence introduce a learning algorithm for SMCMs using both observational and
experimental data.

3.2 Learning from experimental data

As mentioned above, the result of current state-of-the-art techniques that learn
models with implicit latent variables from observational data is a CPAG. This
is a representative of the Markov equivalence class of MAGs. Any MAG in that
class will be able to represent the same JPD over the observable variables, but
not all those MAGs will have all edges with a correct causal orientation.

Furthermore in MAGs the directed edges do not necessarily have an imme-
diate causal meaning as in CBNs or SMCMs, instead they have an ancestral
meaning. If it is your goal to perform causal inference, you will need to know
the immediate parents to be able to reason about all causal queries.

MAGs are maximal, thus every missing edge must represent a conditional
independence. In the case that there is an inducing path between two variables
and no edge in the underlying DAG, the result of the current learning algorithms
will be to add an edge between the variables. Again, although these type of edges
give the only correct representation of the conditional independence relations in
the domain, they do not represent an immediate causal relation (if the inducing
edge is directed) or a real latent common cause (if the inducing edge is bi-
directed). Because of this they could interfere with causal inference algorithms,
therefore we would like to identify and remove these type of edges.

To recapitulate, the goal of techniques aiming at transforming a CPAG must
be twofold:

– finding the correct causal orientation of edges that are not completely spec-
ified by the CPAG (o→ or o−o), and,

– removing edges due to inducing paths.

For the details of the learning algorithm we refer to [13] and [14]. For the re-
mainder of the paper we will focus on constructing an alternative representation
for SMCMs in order to perform inference.

4 Parametrisation of SMCMs

In his work on causal inference, Tian provides an algorithm for performing causal
inference given knowledge of the structure of an SMCM and the joint probability
distribution (JPD) over the observable variables. However, a parametrisation to
efficiently store the JPD over the observables is not provided.

We start this section by discussing the factorisation for SMCMs introduced
in [2]. From that result we derive an additional representation for SMCMs and
a parametrisation of that representation that facilitates probabilistic and causal
inference. We will also discuss how these parameters can be learned from data.



4.1 Factorising with Latent Variables

Consider an underlying DAG with observable variables V = {V1, . . . , Vn} and
latent variables L = {L1, . . . , Ln′}. Then the joint probability distribution can
be written as the following mixture of products:

P (v) =
∑

{lk|Lk∈L}

∏

Vi∈V

P (vi|Pa(vi), LPa(vi))
∏

Lj∈L

P (lj), (1)

where LPa(vi) are the latent parents of variable Vi.
Remember that in a SMCM the latent variables are implicitly represented

by bi-directed edges, then consider the following definition.

Definition 7. In a SMCM, the set of observable variables can be partitioned
into disjoint groups by assigning two variables to the same group iff they are
connected by a bi-directed path. We call such a group a c-component (from
”confounded component”) [2].

E.g. in Figure 1(b) variables V2, V5, V6 belong to the same c-component. Then it
can be readily seen that c-components and their associated latent variables form
respective partitions of the observable and latent variables. Let Q[Si] denote
the contribution of a c-component with observable variables Si ⊂ V to the
mixture of products in equation 1. Then we can rewrite the JPD as follows:
P (v) =

∏
i∈{1,...,k}

Q[Si].

Finally, in [2] it is shown that each Q[S] could be calculated as follows. Let
Vo1

< . . . < Von
be a topological order over V , and let V (i) = {Vo1

, . . . , Voi
},

i = 1, . . . , n and V (0) = ∅.

Q[S] =
∏

Vi∈S

P (vi|(Ti ∪ Pa(Ti))\{Vi}) (2)

where Ti is the c-component of the SMCM G reduced to variables V (i), that
contains Vi. The SMCM G reduced to a set of variables V ′ ⊂ V is the graph
obtained by removing all variables V \V ′ from the graph and the edges that are
connected to them.

In the rest of this section we will develop a method for deriving a DAG from a
SMCM. We will show that the classical factorisation

∏
P (vi|Pa(vi)) associated

with this DAG, is the same as the one that is associated with the SMCM as
above.

4.2 Parametrised representation

Here we first introduce an additional representation for SMCMs, then we show
how it can be parametrised and finally, we discuss how this new representation
could be optimised.



Given a SMCM G and a topological order O,
the PR-representation has these properties:

1. The nodes are V , the observable variables of the SMCM.
2. The directed edges that are present in the SMCM are also

present in the PR-representation.
3. The bi-directed edges in the SMCM are replaced by a number

of directed edges in the following way:

Add an edge from node Vi to node Vj iff:
a) Vi ∈ (Tj ∪ Pa(Tj)), where Tj is the c-component of G

reduced to variables V
(j) that contains Vj ,

b) except if there was already an edge between nodes Vi and Vj .
Table 1. Obtaining the parametrised representation from a SMCM.
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Fig. 3. (a) The PR-representation applied to the SMCM of Figure 1(b). (b) Junction
tree representation of the DAG in (a).

PR-representation Consider Vo1
< . . . < Von

to be a topological order O

over the observable variables V , and let V (i) = {Vo1
, . . . , Voi

}, i = 1, . . . , n and
V (0) = ∅. Then Table 1 shows how the parametrised (PR-) representation can
be obtained from the original SMCM structure.

What happens is that each variable becomes a child of the variables it would
condition on in the calculation of the contribution of its c-component as in
Equation (2).

In Figure 3(a), the PR-representation of the SMCM in Figure 1(a) can be
seen. The topological order that was used here is V1 < V2 < V3 < V4 < V5 < V6

and the directed edges that have been added are V1 → V5, V2 → V5, V1 → V6,
V2 → V6, and, V5 → V6.

The resulting DAG is an I -map [15], over the observable variables of the
independence model represented by the SMCM. This means that all the inde-
pendences that can be derived from the new graph must also be present in the
JPD over the observable variables. This property can be more formally stated
as the following theorem.

Theorem 1. The PR-representation PR derived from a SMCM S is an I-map

of that SMCM.



Proof. Proving that PR is an I -map of S amounts to proving that all indepen-
dences represented in PR (A) imply an independence in S (B), or A ⇒ B. We
will prove that assuming both A and ¬B leads to a contradiction.

Assumption ¬B: consider that two observable variables X and Y are depen-
dent in the SMCM S conditional on some (possible empty) set of observable
variables Z: X 2SY |Z.

Assumption A: consider that X and Y are independent in PR conditional
on Z: X⊥⊥PRY |Z.

Then based on X 2SY |Z we can discriminate two general cases:

1. ∃ a path C in S connecting variables X and Y that contains no colliders and
no elements of Z.

2. ∃ a path C in S connecting variables X and Y that contains at least one
collider Zi that is an element of Z. For the collider there are three possibil-
ities:

(a) X . . . Ci → Zi ← Cj . . . Y

(b) X . . . Ci ↔ Zi ← Cj . . . Y

(c) X . . . Ci ↔ Zi ↔ Cj . . . Y

Now we will show that each case implies ¬A:

1. Transforming S into PR only adds edges and transforms double-headed
edges into single headed edges, hence the path C is still present in S and it
still contains no collider. This implies that X⊥⊥PRY |Z is false.

2. (a) The path C is still present in S together with the collider in Zi, as it has
single headed incoming edges. This implies that X⊥⊥PRY |Z is false.

(b) The path C is still present in S. However, the double-headed edge is
transformed into a single headed edge. Depending on the topological
order there are two possibilities:

– Ci → Zi ← Cj : in this case the collider is still present in PR, this
implies that X 2PRY |Z

– Ci ← Zi ← Cj : in this case the collider is no longer present, but in
PR there is the new edge Ci ← Cj and hence X 2PRY |Z

(c) The path C is still present in S. However, both double-headed edges
are transformed into single headed edges. Depending on the topological
order there are several possibilities. For the sake of brevity we will only
treat a single order here, for the others it can easily be checked that the
same holds.

If the order is Ci < Zi < Cj , the graph becomes Ci → Zi → Cj , but there
are also edges from Ci and Zi to Cj and its parents Pa(Cj). Thus the
collider is no longer present, but the extra edges ensure that X 2PRY |Z.

This implies that X⊥⊥PRY |Z is false and therefore we can conclude that PR is
always an I -map of S under our assumptions. ⊓⊔



Parametrisation For this DAG we can use the same parametrisation as for
classical BNs, i.e. learning P (vi|Pa(vi)) for each variable, where Pa(vi) denotes
the parents in the new DAG. In this way the JPD over the observable vari-
ables factorises as in a classical BN, i.e. P (v) =

∏
P (vi|Pa(vi)). This follows

immediately from the definition of a c-component and from Equation (2).

Optimising the Parametrisation Remark that the number of edges added
during the creation of the PR-representation depends on the topological order
of the SMCM.

As this order is not unique, giving precedence to variables with a lesser
amount of parents, will cause less edges to be added to the DAG. This is because
added edges go from parents of c-component members to c-component members
that are topological descendants.

By choosing an optimal topological order, we can conserve more conditional
independence relations of the SMCM and thus make the graph more sparse,
leading to a more efficient parametrisation.

Note that the choice of the topological order does not influence the correct-
ness of the representation, Theorem 1 shows that it will always be an I -map.

4.3 Probabilistic inference

Two of the most famous existing probabilistic inference algorithms for models
without latent variables are the λ − π algorithm [15] for tree-structured BNs,
and the junction tree algorithm [16] for arbitrary BNs.

These techniques cannot immediately be applied to SMCMs for two reasons.
First of all until now no efficient parametrisation for this type of models was
available, and secondly, it is not clear how to handle the bi-directed edges that
are present in SMCMs.

We have solved this problem by first transforming the SMCM to its PR-
representation which allows us to apply the junction tree (JT) inference al-
gorithm. This is a consequence of the fact that, as previously mentioned, the
PR-representation is an I -map over the observable variables. And as the JT
algorithm only uses independences in the DAG, applying it to an I -map of the
problem gives correct results. See Figure 3(b) for the junction tree obtained
from the parametrised representation in Figure 3(a). Although this seems to be
a minor improvement in this example, it has to be noted that this is the best
possible results for this structure. The complexity of the junction tree in general
will be dependent on the structure between the observed variables and on the
complexity of the c-components.

4.4 Causal inference

In [2], an algorithm for performing causal inference was developed, however as
mentioned before they have not provided an efficient parametrisation.



In [6, 7], a procedure is discussed that can identify a limited amount of causal
inference queries. More precisely only those whose result is equal for all the
members of a Markov equivalence class represented by a CPAG.

In [17], causal inference in AGs is shown on an example, but a detailed
approach is not provided and the problem of what to do when some of the
parents of a variable are latent is not solved.

By definition in the PR-representation, the parents of each variable are ex-
actly those variables that have to be conditioned on in order to obtain the factor
of that variable in the calculation of the c-component, see Table 1 and [2]. Thus,
the PR-representation provides all the necessary quantitative information, while
the original structure of the SMCM provides the necessary structural informa-
tion, for Tian’s algorithm to be applied.

5 Conclusions and Perspectives

In this paper we have introduced techniques for causal graphical modeling with
latent variables. We pointed out that none of the existing techniques provide a
complete answer to the problem of modeling systems with latent variables.

We have discussed concisely the structure learning process and in more de-
tail the parametrisation of the model and probabilistic and causal inference. As
the experimental structure learning approach relies on randomized controlled
experiments, in general it is not scalable to problems with a large number of
variables, due to the associated large number of experiments. Furthermore, it
cannot be applied in application areas where such experiments are not feasible
due to practical or ethical reasons.

SMCMs have not been parametrised in another way than by the entire joint
probability distribution, we showed that using an alternative representation,
we can parametrise SMCMs in order to perform probabilistic as well as causal
inference. Furthermore this new representation allows to learn the parameters
using classical methods.

We have informally pointed out that the choice of a topological order when
creating the PR-representation, influences the size and thus the efficiency of the
PR-representation. We would like to investigate this property in a more formal
manner. Finally, we have started implementing the techniques introduced in
this paper into the structure learning package (SLP)3 of the Bayesian networks
toolbox (BNT)4 for MATLAB.
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