High-dimensional probability density estimation with randomized ensembles of tree structured bayesian networks - Archive ouverte HAL
Communication Dans Un Congrès Année : 2008

High-dimensional probability density estimation with randomized ensembles of tree structured bayesian networks

Résumé

In this work we explore the Perturb and Combine idea, celebrated in supervised learning, in the context of probability density estimation in high-dimensional spaces with graphical probabilistic models. We propose a new family of unsupervised learning methods of mixtures of large ensembles of randomly generated tree or poly-tree structures. The specific feature of these methods is their scalability to very large numbers of variables and training instances. We explore various simple variants of these methods empirically on a set of discrete test problems of growing complexity.
Fichier principal
Vignette du fichier
pgm-pt.pdf (349.28 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00412288 , version 1 (17-04-2020)

Identifiants

  • HAL Id : hal-00412288 , version 1

Citer

Sourour Ammar, Philippe Leray, Boris Defourny, Louis Wehenkel. High-dimensional probability density estimation with randomized ensembles of tree structured bayesian networks. PGM 2008, 2008, Hirtshals, Denmark. pp.9-16. ⟨hal-00412288⟩
106 Consultations
43 Téléchargements

Partager

More